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Summary 
This Document summarizes the progress to date in the Office of Naval Research SBIR 
Project N00014-93-C-0213 Embedded Transputer-based System Design and indicates 
the expected direction of the Research and Development in the following periods. 

1    Overview 

The level of effort expended was broadly on track during this period both at Formal Systems 
and at the Charles Stark Draper Laboratory (Draper) and Formal Systems (Europe) Ltd. 
Most of the slippage against plan reported last quarter had indeed been made up by the end 
of January, although actual delivery of reports was not achieved at that time. There have 
again been staff resource difficulties in the first quarter of 1995, with the result that some 
slippage of Q6 and Q7 deliverables is anticipated. The original schedule had considerable 
slack in the activities planned for Q8, to allow for just such an eventuality, so this should 
not impact the scope of the work completed within the project. 

The main areas of activity and achievement during this period were: 

• Continued experimentation with FDR 2, in parallel with its continued development 
by Formal Systems (Europe) Ltd, leading to appraisal and feedback into the design. 

• Distillation of this experience into requirements for translation and interface tools, 
both for increasing the facility of expression of real-time specifications, and for in- 
creasing the range of implementation notations from which behaviors amenable to 
analysis can be (semi-)automatically abstracted. 

• Discussion with Draper and consequent revision of the models of scheduling and ar- 
chitecture of the Transputer Fault-Tolerant Processor node. 

• Acquisition of timing requirements for the demonstrator scheduler, based on potential 
application systems. 

• Preliminary investigations of routes to incorporate a limited degree of continuous 
real-time analysis into the FDR 2 framework. 

These are detailed in the following sections and the accompanying Deliverables. 
The current status of Deliverables is summarized in Table 1. 



Deliverable Due Status 

D2.1 Detailed natural-language problem statement EndQl Delivered Q2 

D2.2 Formalization of single-lane scheduling problem and 
of fault tolerance requirements 

EndQl Delivered Q31 

Dl.l Initial requirements definition for real-time modeling 
extensions to FDR 

EndQ2 Delivered Q2 

D2.3 Idealized (single-lane) scheduler model EndQ2 Delivered Q31 

D2.4 Fault models and redundant scheduler correctness 
criteria 

End Q3 Delivered Q3 

D1.2 Prototype software for discrete real-time extensions to 
FDR 
Initial process-algebraic solution and Draper appraisal 

EndQ4 Delivered Q4 

D2.5 EndQ4 Revised Q5 
of scheduler models 

D1.3 Prototype Software for Continuous Real-Time 
Extensions to FDR 

EndQ5 Deferred2 

D1.4 Appraisal and Revised Requirements for Discrete 
Real-Time Extensions to FDR 

EndQ5 Expected Q6 

D1.5 Translation and Interface Tools Requirements 
Definition 

EndQ5 Delivered Q5 

D2.6 Timing Requirements Analysis for Scheduler EndQ5 Expected Q6 

D1.6 Appraisal and Revised Requirements for Continuous 
Real-Time Extensions to FDR 

EndQ6 Deferred2 

D1.7 Prototype Software for Translation and Interface 
Tools 

EndQ6 On schedule 

D2.7 Initial Prototype Transputer/occam Implementation 
and Verification of Conformance 

EndQ6 Starting Q6 

D1.8 Revised Code and Full Draft 
Documentation/Justification of Tools 

EndQ7 Not yet started 

D2.8 Revised Prototype Transputer/occam Implementation 
and Architectural Specification of Potential VLSI 
Realizations 

EndQ7 Not yet started 

D1.9 Final Report on Theoretical and Software Tool 
Developments 

EndQ8 Not yet started 

D2.9 Final Report and Appraisal of Fault-Tolerant 
Scheduler Demonstrator 

End Q8 Not yet started 

Table 1: Deliverable schedule 

Note 1: Deliverables D2.2 and D2.3 were consolidated into a single document. 

Note 2: But see the discussion in §2.1 below. 



2    Theory and Software Tools 

The major goal of this project is to establish a viable route from specifications in Hoare's 
Communicating Sequential Processes (CSP) [5] and its real-time variants [8, 3] to imple- 
mentations of real-world, substantial real-time and/or fault-tolerant systems. The initial 
concentration of effort under this head has been directed towards closing the gap between 
the current real-time specification and hand-crafted verification available within Timed CSP, 
on the one hand, and the available highly efficient mechanized verification and development 
aid for untimed CSP systems which is presented by the Formal Systems (Europe) Ltd model 
checking tool, FDR, and the new generation FDR 2. 

The apparent tractability of the kind of problems arising from the Demonstrator Ap- 
plication under the discrete modeling of time is such that we have been concentrating our 
software development and experimentation on that approach for the present. We proposed 
to defer the study of continuous real-time tools until later in the project; thus far this has 
taken the form of a review of past approaches within the field, with an eye to their poten- 
tial for adaptation to Timed CSP mechanization. An outline of the tentative conclusions 
to date is given in the following section. 

2.1    Model-checking continuous real-time processes 

There are obviously fundamental difficulties in trying directly to model and model-check 
continuous real-time systems. Even if the time domain is restricted to the rational numbers, 
rather than the reals, the cardinalities involved in a straightforward encoding of the state- 
space covering all possible evolutions of a system are intractably infinite. 

There are two general classes of strategy that address this problem, both of which may 
be necessary to achieve a practical mechanization of reasoning in this field: 

• Restrictions on the expressive power of the real-time language; 

• Identification of temporally "equivalent" configurations of the system, and calculation 
modulo this equivalence. 

The former technique is undoubtedly needed to some extent, since language inclusion for 
unrestricted timed automata is formally undecidable. The latter deprives the analysis of 
precise numerical data in the case of a counterexample, but does throw up the essential 
behavior of each component relative to the critical timings in its peers. 

Based on work by Dill [4] and Lewis [7] extending state-graphs with timing constraints in 
a continuous model of time, Alur, Courcoubetis and Dill have studied the problem of model- 
checking timed w-automata for langauge inclusion and against temporal logic formulae [2,1]. 
The principal language restriction, which is unlikely to be problematic in real examples, 
is that the system should compare each of its finite number of clocks only with integer 
constants, and that the only discontinuities in their evolution should be "reset" events 
restarting one or more from zero. They observe that, in a finitely expressed system, there 
is a bound (Kc, say) on the values with which each clock c can be compared, so that the 
integer part of a clock's state can be modeled by a value drawn from {0,..., Kc, Kc+1}, 



where "incrementing" the largest value leaves it unchanged. For the fractional part of 
the clocks, the only effects that might be detected from the untimed observation of state 
transitions are those due to the relative order (or synchrony) of crossing integer boundaries; 
adequate timestamping can therefore be abstracted by observing which clocks have most 
recently "ticked". Thus the significant timing information can be encoded as the product 
of the \KC+1) terms and the number of ordered partitions of the clocks; while potentially 
very large, this factor need not be prohibitive of mechanized exploration. 

Jackson's doctoral work [6] presents a finitized dialect of Timed CSP, which exhibits the 
same properties. We have been giving some thought to how these notions can be imple- 
mented within the FDR framework, as the most promising approach to adding continuous 
time to this work. 

3    Demonstrator Application 

The demonstrator application is to be a verified real-time fault-tolerant scheduler, for a 
machine such as the Draper Transputer Fault-Tolerant Processor (TFTP). 

Significant features of recent developments include: 

• Decision to target existing TFTP hardware; this was always the probable outcome, 
but the availability and practicality of using the Draper hardware has been checked 
out. 

• Characterization of control system to schedule, incorporating and refining assumptions 
set out in D2.1 and scoping the problem within available resource; 

o Hard Real-Time problem, with well defined data dependencies; 

o Real-world application, not dummy tasks; 

o Not more than tens of tasks; 

o Not requiring implementation of complex simulation environment interface; 

o Iteration rate within real-time performance (unsealed) of hardware. 

At a meeting in early February, a shortlist of six applications was drawn up, with 
a final decision (based in part on technical criteria, and in part on availability and 
support of original development projects) in the following quarter. 

• A more precise formulation of the Byzantine agreement property, and validation of 
the architecture against it. 

• Demonstrative application of the verification techniques previously applied to system 
level properties to the single-node timing proof obligations of the form generated by 
that higher-level analysis. 

As promised, comments have been solicited from Draper on D2.5 and their feedback has 
been incorporated in a revised version of the document, which accompanies this report. 



4    Accompanying Documents 

The following documents accompany this report. 

• Deliverable D1.5, in the form of a paper entitled Specification Languages for Reac- 
tive Systems. This introduces a range of notations suitable for describing real-time 
specifications and, more generally, real-time reactive systems. Topics covered include: 

o Regular expressions; 

o Temporal logics; 
o The modal /^-calculus; 
o The duration calculus; 

o Davies' approach; 
o Tabular approaches; 

o Timed CSP. 

This last gives an embedding of the operational semantics for a finitization of TCSP 
into the discrete "tock" model we have been using so far. 

• Revised Deliverable D2.5, updated in the light of feedback from Draper. 

• Verifying Timing Properties of Static Schedulers, a paper which expands the ideas 
of Working Paper W2.2.1, and provides motivating arguments for the forthcoming 
Deliverables D1.4 and D2.6. 
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Summary 

This document discusses possible additional specification and description 
methods to be integrated into the FDR system. The methods are chosen 
and discussed with particular relevance to real-time description in general and 
scheduling properties like those in [9] in particular. 

We conclude with a list of required support, including suggested priorities 
for those to be addressed in the short term. 

1 Overview 

Each of the following sections discusses a method, or family of methods, which could 
be used to describe models or propeties of reactive systems. A wide variety of mech- 
anisms is covered, and although all are amenable to formal description, they express 
a range of features and have differing needs and applications, so that we should defi- 
nitely consider them as complementary, rather than exclusive. 

As the desire to express properties in a more abstract form than CSP programs has 
been raised by a number of external agencies, we first consider methods for describing 
abstract constraints on behavior. 

2 Regular Expressions 

If we consider the whole range of computer application, possibly the greatest use of 
formal property expressions is to describe sequences or patterns for matching and 

This is Deliverable D1.5 in the Office of Naval Research SBIR Project N00014-93-C-0213 Embedded 
Transputer-based System Design. 



searching1. We might therefore hope to be able to take advantage of a common and 
unambiguous formalism taken from this area to provide an intuitive way of describing 
sequences of actions. This section considers using the language of regular expressions 
(regexps) to place constraints on CSP processes. Instead of matching a string or 
sequence of characters to a pattern, we compare a sequence of events (a trace) to a 
pattern expressed in terms of individual actions. 

While the expressive power of regular expressions is limited, and there is no formal 
expressive gain over the traces model of CSP, the wide acceptability of regexps would 
make them an ideal engineering framework. The fact that regexps are expressible in 
CSP should actually greatly simplify their implementation: we may translate them 
into CSP process descriptions, and take advantage of the fact that the standard 
reduction of nondeterministic (e-move) automata to determinsitic automata often 
used in the compilation of regexps is, in fact, a special case of CSP normalization. 

A language of regular expressions for sequential behavior specifications should 
include at least the operations usually supported by pattern matching facilities: 

Sequencing A B which represents a behavior matching A followed by one matching 
B. 

Alternatives A  I  B representing behaviors which match either A or B. 

Grouping using parentheses (). 

Optional elements such as A? which matches either A or the null behavior. 

Repetition either A* representing a behavior consisting of zero or more behaviors 
matching A, or A+ where at least one repetition must occur. 

A useful extension would be 

Numbered Repetition perhaps written n{A}m where n and m are numbers which 
bound the number of repeated behaviors (each matching A) which constitute a 
behavior matching the compond regular expression. 

One area where behavioral descriptions may need to differ slightly from textual ap- 
plications is the specification of individual actions (corresponding to the characters 
in a text expression). The language should at least include 

• Explicit event names 

• Partially specified events (perhaps naming the channel while leaving the actual 
data unidentified 

• Completely unspecified events (the equivalent of . in text expressions). 

1 Almost any word-processor includes such a feature! 



The description of partially specified events will require careful consideration: the . 
symbol is conventionally used in CSP as a field separator, and in regular expressions 
as a "wildcard". It may be necessary to introduce an alternative wildcard symbol 
which can be combined with explicit event and data symbols using . in its CSP sense: 

in.ANY.1 
ANY 
out.ANY.ANY 

The underscore symbol _ might provide a suitable shorthand for ANY. We might also 
hope to provide a short-hand description for ranges of similar items analogous to 
classes of characters in text, perhaps in the following form 

in.[0-3].[7-10] 

Perhaps the most useful extension, however, would be support for the use of 
some free variables in regular expressions, to allow formal interpretation of common 
informal descriptions like 

(  in.X:{0..9} out!X )* 

In the expression, of course, the usual intuitive interpretation is that the first X binds 
to a specific value, and the second refers to this. A possible alternative might be to 
permit a form of indexed choice: we could then write 

(   I  X:0-9 ® in.X out.X)* 

2.1     Safety properties 

Actually exploiting regexps as a specification language seems possible in two distinct 
(and complementary) ways: we may either make positive assertions about the set of 
traces permitted, or we may identify specific patterns of behavior to be prohibited. 

In the former case, we can restrict ourselves to a single regular expression and 
use the choice operations (I) to combine distinct options. We may also wish to 
ensure (perhaps simply by interpreting the expression appropriately) that any prefix 
of a permitted trace is itself permitted; it is certainly necessary for any satisfiable 
specfication to allow the empty trace. 

The use of regular expressions to prohibit behavior patterns requires fewer restric- 
tions, although we should still be aware that the empty trace must not be prohibited 
by any satisfiable specification. In this case, however, there are greater arguments for 
demanding that a number of separate constraints can be simulataneously imposed, as 
there is no straightforward operation in the usual regular expression languages which 
captures intersection in the way that I represents union. A variation of the latter case 
would allow regexps to describe system states, and then permit the user to specify 



events which should not be permitted in particular states. This is a trivial variant of 
the second class of specifications above and may not be worth implementing directly. 

In either case it is desirable to provide a means of limiting descriptions to part 
of a system's interface. Semantically, this should be equivalent to abstracting from 
other events, ideally by considering the regular expression specification interleaved 
with RUN (in the traces model) or CHAOS (in the failures-diveregences model) on 
the rest of the alphabet. Hiding irrelevant events is a less satisfactory means of 
abstraction as it may introduce divergence. 

A more general solution would be to provide an interleaving operator in the lan- 
guage of expressions which could be used to perform this abstraction explicitly. This 
would allow the user greater freedom in choosing the patterns of abstraction, but 
because it is requires explicitly describing the irrelevant events, it is potentially some- 
what cumbersome and confusing, so should perhaps be considered at best an alter- 
native to a simpler scheme. 

2.2    Liveness specifications 

While simple regular expressions are sufficient to express safety properties, they do 
not allow us to specify which events must be possible. Perhaps the simplest way of 
achieving a more expressive language to allow specific refusal information, perhaps in 
the form of a set of events which cannot be refused, with a regular expression which 
determines when the condition should apply. For example we might specify a buffer 
as follows: 

(  in.X out.X )* OFFER in.ANY 

(  in.X,   out.X )*  in.Y OFFER out.Y 

Note that this latter case complicates the variable scoping rules, and we need a way 
of specifying wildcard events in sets as well as in regexps. 

If only simple assertions of this form are permitted, it should be possible to check 
such constraints independently. Again, however, we must provide a means of specify- 
ing which parts of a system's interface are to be constrained by a particular condition. 

We should consider enriching the language of offers: conjunction and disjunction 
are clearly desirable, but existential and universal quantifiers might be more useful, 
and would permit an alternative (slightly weaker) buffer specification: 

(in.X, out.X)*      OFFER ALL X Q in.X 
(in.X, out.X)* (in.Y) OFFER SOME X 0 out.X 

10 



2.3    Use in other contexts 

In addition to the simple uses outlined here, regular expressions over traces do appear 
to capture many of the usual interpretations of "states" which are used in other formal 
specification languages. For example in the one place buffer we might use the regexp 

(  in.X out.X )* 

to characterize the "empty" state, and 

(  in.X out.X )* in.Y 

to charaterize "full" or "contains Y". A possible use of such state characterizations 
is in the duration calculus discussed in Section 5 below. 

3    Temporal Logic 

A wide variety of logic languages enhanced by temporal operators have been proposed. 
Techniques for verifying that assertions made in many of these languages hold of a 
range of classes of finite state machines and automata have also been widely studied. 
The difficulty in adopting such temporal logics for CSP specification lies in identifying 
a particular language which is practically applicable and consistent with the theory 
of CSP [8]. 

The larger proportion of work on applications of temporal logic to computing ap- 
plications has concerned logics which refer to specific points in time. (A specification 
language based on a logic of intervals is discussed in § 5.) Within these point-based 
logics, two possible views of time are common: 

• Branching time logics treat the space of all possible instants as a tree so that an 
instant may lead to many possible future paths, but has a single past history. 
This branching may be used to represent the resolution of choices as a process 
evolves. 

• Linear time logics view the set of all instants as a total order: each instant has 
a single past and future ordering. In this scheme any given evolution follows a 
single path, but a process may be seen to behave in a variety of ways. 

The most widely used branching-time temporal logic is CTL, developed by Clarke 
et al ([1], for example). Efficient algorithms have been developed for testing if finite- 
state machines satisfy CTL formulae, and the SMV model-checker has established a 
de-facto standard for machine-readable CTL. 

The basic language of CTL couples temporal operators, such as o ("eventually") 
and □ ("forever") with quantifiers specifying how these relate to future paths. For 
example 

11 



Formula   Meaning 

V Ucj) (f> holds forever along all future paths 
3 D(j) (f> holds forever along some future path 
Vo(/> Along all future paths, (f> eventually holds 
3 o4> 4> eventually holds along some future path 

It should be noted that some CTL operators, particularly 3 o, allow us to assert that 
particular behaviors are possible for a system. If we consider giving meaning to such 
formulae in CSP, these existential specifications will assert the presence of a partic- 
ular element or elements in the set of possible observations. Such specifications are 
inherently non-monotonic with respect to the refinement relation C and consequently 
cannot be easily used in the style of development and verification by refinement which 
motivates FDR. (In fact, these specifications may be non-constructive and thus dif- 
ficult to esablish of a CSP process by any means.) 

Linear time temporal logics take a somewhat different view of satisfaction and, 
like CSP sat specifications, typically insist that all possible behaviors meet a spec- 
ified formula. The absence of alternative paths simplifies the form of the temporal 
operators, resulting in specifications like the following, for example, 

D(a => ob) 

which states that any a is eventually followed by a b. 
The major difference between the usual style of specification in CSP and linear- 

time temporal logics lies in their treatment of infinite behavior. Temporal logic for- 
mulae are usually interpreted over complete views of a behavior, and the models 
of computation used with them assume that a process has control over its future 
behavior. It is thus possible to claim that a system can satisfy a specification like 

oa 

which asserts that a must occur eventually in any execution. The future behavior 
of a CSP process, however, depends on its interaction with the environment, and 
thus eventuality conditions must depend on assumptions about the environment's 
behavior. A further technical difference lies in that fact that most CSP models refer 
to only the finite behaviors of a process, and assume that infinite behaviors will simply 
be the limit of these. Temporal logic models, however, may specifically incorporate 
notions of fairness which influence only infinite behavior. A common consequence of 
this is that a CSP process can often only be proved to satisfy an eventuality property 
when it in fact satisfies a stonger condition (e.g. it may be true that eventually event 
b becomes available after each a, but this may be a trivial consequence of making b 
available as the next event after each a). For a position on fairness which matches 
that characterized by CSP, see [3]. Some linear-time temporal logics which attempt 
to avoid these problems by introducing axiomatizations of the properties of CSP 
behaviors are presented in [8]. 

12 



4    The Modal //-calculus 

A related logic language which has attractions as a specification formalism for com- 
munication and evolution is the modal //-calculus used by Milner, Stirling, et al. 
Like temporal logics, the //-calculus uses conventional logical operators enriched with 
modalities which in this case take the forms 

Formula   Meaning  
[a](j)       After any a transition, (f) holds 
(a)(j)      An a transition is possible after which 4> holds 

The language also includes fixed-point operators: 

Formula    Meaning 
uZ.4>(Z)    The weakest condition such that Z =*> 4>{Z) 
// Z.<j){Z)    The strongest condition such that 4>{Z) =>• Z 

Additional modal operators can be defined using sets of events (e.g. after any event 
in set A, <\> holds), and modal operators which ignore internal actions can also defined 
in terms of fixed-points. 

An attractive property of the //-calculus is that the majority of the common tem- 
poral logic operators can be encoded in it, and that it is sufficiently expressive to 
capture virtually all common types of properties directly (including safety, liveness 
and fairness). It also refers to transitions between states in a similar manner to CSP, 
and makes similar distinctions between visible and invisible actions. Its expressive 
power does itself raise some complications, however. Like branching-time temporal 
logics, //-calculus specifications can make many more distinctions between processes 
that the theories of CSP on which FDR is based, including properties which are not 
preserved by refinement. We should expect to restrict ourselves to particular classes 
of formulae if we are to make optimal use of both the expressiveness of such a logical 
language and the power of asbtraction inherent in CSP. 

5    Duration calculus 

The duration calculus [12] is based on an alternative temporal logic which treats 
intervals, rather than points, as the basic concept (see, for example, [10]). It also 
provides an interpretation of properties which allows the total time for which they 
are true within an interval to be measured. Its intention is to provide a means of 
formalizing the types of property which are expressed in engineering data books by 
timing diagrams. 

For example, the length of an interval could be expressed as the duration of the 
predicate true, written / true. Then to claim that a condition Leak holds for no more 

13 



than one minute in every hour, we might use the predicate 

[/ true ^ 3600 =► / Leak ^ 60) 

The principle temporal operator in the duration calculus is the "chop" operator ;. 
The formula p ; q holds of an interval if there is some division into two adjacent 
intervals such that the first satisfies p and the second satisfies q. 

A practical application of the calculus to CSP specification might would need 
two elements: the temporal element (including the usual propositional connectives) 
and some means of describing states (such as Leak above). The state descriptions 
should probably be based on the trace of visible events. We should probably ulti- 
mately allow both the identification of states with particular patterns (such as the 
regular expressions of Section 2) and with simple assertions about the values recently 
communicated on channels. The lack of a clearly satisfactory interpretation of state 
variables is currently a notable restriction on its use in conjunction with CSP. 

This is a greater issue in interval-based than in point-based temporal logic because 
the occurrence of an instantaneous atomic communication cannot sensibly be given 
a duration, while such events can clearly be incorporated into a point-based logic. 

Overall, the duration calculus probably offers a useful expressive power in the 
longer term, but its use in practice is insufficiently established to permit extensive 
development at this stage. It is worth noting, however, that a mechanical approach to 
testing the validity of duration calculus assertions has been proposed by Skakkebaek 
and Sestoft [11], and that this technique uses a translation into regular expressions 
of the sort described above, placing further emphasis on the importance of that tech- 
nology. 

6    Davies-style Macros 

One approach which has been proposed specifically for specifications using the Timed 
CSP model is "macro" language for Timed-Failure specification proposed by Davies 
in [2]. In essence, this language is a first-order prodicate logic with variables ranging 
over time values. Assertions may be made about the availability or occurrence of 
events at specified times: 

Formula Meaning   
a at t Event a is observed at time t 

a from t Event a is available from time t until it 
occurs 

a from t until t'    Event a is available from time t until it 
occurs or time t' is reached 

a from t until b    Event a is available from time t until either 
a or b occurs 

14 



These expressions can be extended to allow non-determinism by permitting sets of 
events or times to be specified. To support concise specification of processes involving 
the hiding operator, Davies also defines an "active" predicate which asserts that the 
environment never prevents actions on a given channel. The language can be extended 
to include functions on the sequences of actions performed during specified intervals, 
including, for example, 

• the sequence of data on a specific channel, 

• the number of occurrences of events in a given set, and, 

• the time of the last occurrence of an event in an interval. 

An example of this style of specification can be found in [5, Section 7]. 
Using a general predicate logic as the underlying logical framework gives Davies 

specification style a great deal of expressive power, but does not lead easily to me- 
chanical verification. Perhaps the most attractive approch is to consider properties of 
behaviors expressed in the style as the "state" formulae in a temporal or modal lan- 
guage. For example, a valve controlled by open and close events may be characterized 
by two states expressed as predicates on the timed trace s: 

Open   =   last (s \ {open, close}) = open 

Shut   =   last (s \ {open, close}) ^ open 

We might then insist that over any 10 minute period the value was shut more often 
than it was open by a duration-calculus style formula: 

n(£ ^ 600 =► / Shut ^ / Open) 

Based on the standard models of Timed CSP, this approach conventionally makes 
reference to refusal (i.e. liveness) information throughout the whole evolution of a 
process. Although the current mappings of timed analysis into the untimed domain 
do not entirely match this model, the prioritization operator of [4] does allow us to 
express similar properties to those which would be expressed in Timed CSP by a 
refusal predicate. To express the notion that an event a always occurs when offered 
by a process in Timed CSP, we take as an hypothesis that the event is active: a 
is perceived (by the environment) to be refused at all times. A similar concept can 
be encoded in a prioritized model of untimed CSP by giving a a high priority: time 
(represented by a lower priority event) will only pass when a cannot occur. We should 
also note that stable refusals may be constrained in a similar manner in both Timed 
and untimed CSP: in both frameworks we may insist, for example, that a is possible 
following a b event by claiming that when the latest event is b, a should not be stably 
refused. Because TCSP behavior sets are prefix-closed, this is sufficient to guarantee 
that a is available at appropriate times throughout an execution, even though our 
untimed assertion considers only behaviors ending in b. 
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7    Tabulated Functions 

The preceding sections have discussed a variety of methods of describign specific 
properties of systems. The next two describe some description techniques which 
experience on this project have indicated would be useful in describing the models 
rather than their properties. 

One of the most potentially useful vehicles for requirements capture does not 
address the definitions of processes or models at all, but simply reduces the effort 
required to create and maintain models: the ability to capture tabulated or structured 
data easily is a great asset. 

We require two features of a data capture facility: 

• It should take input in a standard form or forms, e.g. from a common spread- 
sheet format, and 

• The captured information should be easily accessible within a model 

The choice of preferred data source is in fact relatively straightforward: apart from 
propietary formats, spread-sheet packages share few common interchange formats, of 
which the Comma Separated Value (CSV) form is most popular. We propose that 
FDR be extended to allow CSV files to be used to define model parameters. 

Providing an interface to this data within a model requires further clarification, 
however. Perhaps the cleanest form of integration would be to allow function defini- 
tions to be tabulated: 

pragma tabulated f,  g 

P(x)  = a  !  f(x)  -> Q(g(x)) 

The pragma declaration must include the name of the function, and possibly also 

• the name of the file containing the definition, 

• the number and type of the arguments to the function, and, 

• the type of the result. 

As well as simple evaluation of functions, the CSP interface to a data table should 
include some way of determining the domain of a tabulated function, both as a true 
set and also as a sequence which reflects the order in the original source. These 
simple facilities would be sufficient to support practical applications such as allowing 
the Engine Management System model of [9] to be maintained by engineers without 
detailed knowledge of CSP. 

To facilitate this type of usage, the FDR facility should permit 
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• Functions of up to at least three arguments 

• Multiple functions denned over the same domain in a single table 

• Interrogation of a functions domain as a set and a sequence 

A further development would be to allow additional information to be included 
in a spread-sheet format, including, say, definition files to be loaded and checks to 
be performed. This would allow a suitably configured FDR model to be operated 
entirely from a non-CSP data source. 

7.1    State transition tables 
A natural side effect of providing this facility (which could perhaps be further ex- 
ploited by providing a suitable library function) allows state machines to be con- 
structed from state-tables in a fairly simple manner. If we define a function next (in, curr) 
which relates input events and current state values to successor states, the simple CSP 
process 

PCs)  =   []  x  :  alphaP 0 x -> P(next(x,c)) 

provides an animation of the state machine defined by next. This trivial model can of 
course be extended to restrict permitted inputs and to allow outputs to be generated 
in the usual Moore machine style, as in the following example which uses the following 
functions 

inputs (s) Returns the set of inputs expected in state s 

outputs (s) Returns the set of outputs possible in state s 

next(s.v) Defines the state reached from s when v is communicated. 

PCs)  = CD  x  :  inputsCs)  @ x -> PCnextCs.x))) 

CI~I  y  :  outputsCs)  8 y -> P(next(s,y))) 

The transition function next can be expressed as a function of two variables, either 
in a simple tabular form: 

Current Input Next 

1 a 2 
1 b 3 
1 c 4 
2 b 1 
2 c 6 
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or as a two-dimensional grid: 

Input 
Current a b c 

1 2 3 4 
2 1 6 

In wider use, it would be desirable to allow a wider range of constructs to provide fuller 
support for state variables and channel values. One approach would be to allow a set 
of variables to be defined for each state-transition table. These could be referenced 
in the column headings of a state transition matrix by the ? and ! notation: 

TABLE copy 
VARIABLE x 
INITIALLY empty 
TRANSITIONS 

,       in ? x    ,    out   !  x 
empty     ,      full , 
full       , ,    empty 

(Either numbers, or preferrably, symbolic names could be used in the vertical axis of 
such a table as state identifiers). 

An alternative scheme (but one which is possibly over complex) is to associate 
variables with states. In defining the "next" function, event labels with ? then bind 
that name in the successor state, event labels containing ! use the value in the current 
state. 

in ? x    out ! x 

empty   full(x) 
full(x) empty 

The direct translation from either of these forms of table to CSP is straightforward. 

8    Timed CSP 
Given our work on discrete time, an obvious enhancement to the modelling capabil- 
ities of FDR is to extend the input language to support Timed CSP and allow its 
translation to a clocked process. 

The additional operators which need to be supported are 

WAIT t Delay 
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a —> P Timed prefixing 

P i{i\ Q Timed interrupt 

P >{t] Q Time-out choice 

In addition, fuller support for the untimed CSP interrupt operators is desirable, in- 
cluding 

P A Q General interrupt 

Support for older, less general, interrupt operators would be advantageous, and could 
be provided by syntactic transformation: 

P V Q Event-triggered interrupt 
a 

P V Q   =   P A a-> <? 
a 

intr(a, P) Resetting interrupt, 

intr(a, P)   -   /x X.P A a -* X 

The required semantics of the simpler processes in a discrete time framework are 
quite clear; we suggest the following, where x 1S the distinguished event which repre- 
sents the passage of a unit of time, and JPJ represents the discrete-time translation 
of P. 

{WAITtj   =     if * = 0 then SKIP  else  X -> \WAIT{t - 1)\ 

[o-^P]   =   WAITING(a,t,P) 

WAITING{a, t,P)   =   x^ WAITING(a, t, P) 
D 

a-> \WAITt\\P 

P^P' 
[a^x] 

PHt}Q^P'Ht}Q 

     [t>0] 
P l{t}Q±P> i{t-l}Q 
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Pi{0}Q^Q 

P^P' 

P>{t} Q^P'>{t} Q 

P >{t} Q A P' 

P A P< 

[^{X,r}} 

P>{t}Q±P'>{t-l}Q 
[t>0] 

P>{0} Q A Q 

For the interrupt operator: 

P A Q A P' A Q 
a £ initials(Q) 

PAQ^Q' 
[a^r] 

P A Q A P A Q' 

Practically, there are two possible approaches to integrating these operators with 
untimed CSP: we might construct separate definitions in a purely timed language and 
provide a global translation, but it seems perhaps preferable to allow a mixture of 
processes definitions using the above operators (where timing information is implicit 
in the syntax) and untimed processes, or at least processes in which the timing events 
are explicit. In adopting the latter course, it will be necessary 

• to ensure that the semantics of untimed processes are consistent with the stan- 
dard models, or at least can be made to be so by user-selectable option. 

9 to allow the additional features to be disabled in such a way as to prevent 
accidental usage in conventional CSP scripts 

A fuller interface to prioritized checks, and other functions or operators particu- 
larly useful in a timed context is obviously necessary in the longer term. 
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9 Quantitative Results 

Reference [9] shows that numerical information may be extracted from CSP models 
by including families of additional transitions and recording those which are actually 
enabled in reachable states of the combined specification and implementation ma- 
chines. While this approach is still in the early phases of development, we may at 
least consider how a more mature technology could be integrated into our system. 
One possibity is to introduce annotations into the CSP model of a specification which 
make assignments to measured parameters when specific transitions are taken. For 
example 

Deadline(x)  = tock -> Deadline(x-1)   []  done {margin  := x} -> Reset 

An alternative approach could associate parameters with the states such as x in 
Deadline (x) above. 

10 Summary: Required Functionality 

We propose that the following extensions to FDR be provided in the short term: 

• Tabulated functions and simple state-transition tables 

• Regular expression descriptions of safety properties 

• Discrete-time interpretations of TCSP operators 

That within the life of the current project, the functionality should be extended to 
include: 

• Regular expression descriptions of liveness properties 

• Support for a modal- or temporal- logic (perhaps the Duration Calculus) by 
property checking in some form, at least covering safety properties, 

and that the following specification formalisms are considered for longer term support: 

• timing specific specification languages in the Davies style, possibly coupled with 

• fuller support for temporal logic property descriptions 
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Summary 

This document describes our work to date on formalizing the design and 
analysis of the Transputer Fault-Tolerant Processor system. The early sections 
summarize the fault-tolerance properties which we intend to verify, our model 
and a simple demonstration that the architecture does meet our requirement 
for Byzantine fault-tolerance. We then describe how such verification can be 
simplified if we exploit the symmetry both the overall design, and of the be- 
havior of its components. The next section describes how we can relate these 
models of network behavior to the application level scheduling problem, and 
in particular how we can exploit temporal redundancy to tolerate transient 
faults. It includes discussions on voting, permuted schedules and on transient 
recovery techniques. Abstract models of task execution and voting are given 
which, despite their simplicity, provide a framework for future models of spe- 
cific scheduling policies. We include two more detailed models of the system 
which analyse a distributed model of the system using synchronous and partly 
asynchronous models. 

This is a revised Deliverable D2.5 in the ONR SBIR project N00014-93-C-0213 Embedded 
Transputer-based System Design. 
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1    Fault-Tolerant Behavior 

We begin by summarizing the types of behavior which we ultimately intend to analyse 
in order to show how they can be expressed in terms of the models we will describe 
below. 

1.1    Classes of Fault-Tolerance 

The first class of faults we will consider, and the errors they may cause are, those 
outlined in a previous project document, [2].   These are the Byzantine failures of 
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a system element, after which no assumptions can be made about the behavior of 
the component. In particular, such faults may not be manifest - failure may not be 
obvious to those parts of the system with which the failed element interacts. It is 
well-established that a suitably redundant system can tolerate Byzantine failures, but 
that the cost of such a system is higher (i.e. it requires greater redundancy) than a 
system designed to tolerate manifest faults (see, for example, [10]). 

We can exploit this redundancy, however, to improve tolerance to other types of 
fault. Of particular importance are "common-mode" errors which arise in a number 
of replicated elements simultaneously, perhaps as the result of some environmental 
factor. Where these errors arise from transient faults (such as corruption of semi- 
conductor memory) we can use temporal redundancy to allow correct operation to be 
resumed even if the number of elements affected is much greater than the number 
of Byzantine failures that a system might tolerate. This strategy has again been 
outlined in a previous project report [1]. 

Obviously these two situations are far from being an exhaustive catalogue of fault 
situations which we might design a system to tolerate but they do represent a pos- 
sible extremes: in the Byzantine case we suffer complete non-manifest failure of few 
components, in the transient case we tolerate identifiable temporary faults in many. 
Other combinations, such as manifest permanent faults, may be included in later 
analysis. 

1.2    Fault models 
Modeling a component capable of Byzantine failure is relatively straight-forward, 
because we need to satisfy very few constraints on behavior after an error, but we 
must nevertheless take into account the features that our model represents if we are 
to provide a satisfactory model. 

High level abstractions In models at the highest level of abstraction (the repli- 
cated synchronous view of [2]), a failed component can be represented as ignoring 
all inputs. We choose to ignore, rather than to refuse, inputs in order to remove the 
need to model details of the error detection and buffering which is used in practice 
to implement communication between distributed components. These communica- 
tion elements are, of course, modeled in the lower level abstractions (Section 6 of 
this report). Abstracting from the implementation of the communication and error 
detection mechanism also influences the way we should model outputs from a faulty 
system element. The most obvious approach is to allow arbitrary generation or refusal 
of output events. This correctly captures the idea that a failed component exhibits 
the most general possible behavior but does not reflect the ability of a receiver to 
detect when outputs are being refused (typically by means of a time-out). We there- 
fore model a faulty output as a combination of arbitrary valid outputs together with 
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a distinguished error value which is always potentially available. While placing con- 
straints on faulty behavior may appear unrealistic, it should be remembered that our 
fault model is actually also incorporating a significant amount of information about 
the ability of connected components to detect faults. We will make this information 
more explicit in later sections, but this abstract model will remain useful because it 
does not make assumptions about how communication errors are detected, and thus 
applies to a wide range of possible error detection techniques, including time-outs, 
parity or check-sum errors or more complex protocols. 

Lower level abstractions In more detailed models the models of faulty compo- 
nents actually become simpler, because we are able to model more faithfully the way 
in which errors are detected by the remainder of the system. Both input and output 
behavior of a process after the occurrence of a Byzantine fault can be assumed to be 
entirely arbitrary: both inputs and outputs can be performed in any order, or refused 
at any stage. This is exactly the behavior of the CHAOS process of CSP, as we 
might expect of a completely undetermined behavior. 

By their very nature, transient faults require a more detailed model of the internal 
state of a system than Byzantine failure. The essence of our approach will be to 
decompose the application calculations into a series of tasks each of which calculates 
new values for part of the system state (and may produce outputs) from the previous 
system state and any inputs present. A transient fault is modeled by assuming that 
the fault corrupts some part of the processor's state arbitrarily, and that all tasks 
depending on that part of the state may in turn corrupt their outputs and final 
states. The task of the fault management system is to identify the corrupted parts 
of the system state and re-generate it where possible. Adding sufficient information 
to our high-level model to support this reasoning is discussed in Section 4 and later 
sections. 

2    High-level Architecture 

For practical applications, we will assume that tolerance of a single Byzantine fault 
is sufficient, and thus we will concentrate on quad-redundant systems. Each of the 
four redundant fault-containment regions (FCRs) which make up such a system must 
execute both the application tasks and the functions related to fault management: 
in our demonstrator application each FCR will typically contain two processors, one 
executing the application and another managing communication and input-output. 
This bipartite view is also applicable to single processor systems built using Trans- 
puter hardware, as separation between processing and communication is present even 
if the components are actually a CPU and a link engine on a single IC. 
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Figure 1: Communication between peers 

2.1    Implementing the Oral Messages algorithm 

As discussed in [2], we will use the Oral Message (OM) algorithm to establish con- 
sensus values for data in the presence of faults. Each FCR will communicate its local 
values for state and output data to its peers, and vote upon a derived value using 
its local data and the values it receives in return. The communication will have the 
pattern shown in Figure 1. Each node in Figure 1 represents the communications 
processing element of an FCR. Data is received from the application along the in 
channel and passed out along the cross channels (the vertical links in the diagram). 
Values received, along with the original value received, are combined by a majority 
voting process and the result is passed to the application or the environment. 
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Figure 2: High-level Model Architecture 

3    Tolerance of Byzantine Faults 

We start our analysis with a high-level abstraction which serves to justify our primary 
claim of tolerance to Byzantine faults. The following model has the same structure 
as that outlined in Section 2.1. We concentrate on modeling the communication 
behavior of the system, and thus model the behavior of the input-output subsystem 
alone, representing data flowing to or from the application or 10 devices by sets of 
channels in and out. The pattern of communication is then as shown in Figure 2. The 
channels in and out may not, of course, exist as explicit data paths in the case that 
application processing and communications are combined on a single processor, but 
there will always be some identifiable transfer of data corresponding to them. Each 
FCR (i.e. each node in Figure 2) is represented by two processes, one representing 
the outward transfer of local data to peer FCRs, the other representing voting using 
data received. 

The desired behavior of our system is described in [2] in terms of two properties 
of a system distributing data from a single source by means of a two-stage algorithm. 
The properties are: 
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Agreement If two processors are non-faulty, they agree on the data values which 
they believe are being communicated. 

Validity If the originator of a data item is non-faulty, all non-faulty processors derive 
the correct value. 

To model the two stage transmission we will consider a network consisting of the 
four communication elements of our system together with an addition process which 
performs the initial data distribution. In a physical system we would expect this 
additional task to be implemented within one particular FCR, the transmitter of the 
data flow being considered, while the other FCRs would be receivers of the flow. 

We can verify a variety of properties of the system by adding components to our 
network which do not correspond to any actual implementation processes, but rather 
capture our ability to observe the system. For example, one reasonable property which 
captures some aspects of the validity condition (although it is strictly weaker than 
the version given above) is the claim that a majority of the outputs of all channels 
should agree on the correct value, as long as the transmitter is functioning. We 
may demonstrate that our system satisfies this requirement by adding a final overall 
majority voting process to the system. If each FCR delivers the value it computes to 
this final vote, then if the validity property holds of outputs of the FCRs, the output 
of the voter must always match the value provided by the data source. The overall 
data-flow through the network is shown in Figure 3. We require that this complete 
system, when viewed as a data transmission medium between its source and the final 
output, is a perfect buffer, provided that the first-round data distribution is non- 
faulty. This must hold even if one of the receiver FCRs is Byzantine faulty. A CSP 
model of this system (suitable for analysis with the FDR [3] tool) is given below. 

tftp.csp: Model demonstrating tolerance of 4-FCR Oral-Messages algorithm to 
a single Byzantine fault. 

(c) Formal Systems Design & Development, Inc, 1994 

Originated by: Dave Jackson. 
— This version:   $Id:  tftp.csp,v 2.2 1995/04/20 20:45:12 dave Exp $ 

In the current model we are principally interested in the distinction between a real 
data value and a potentially erroneous one. It will suffice, for the present, to consider 
a single "good" data value, and an error token, Err: 

RAWDATA = {0} 

Err = 99 Any value not in RAWDATA 
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Figure 3: Detail of Data-flow Through FTP Model 
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DATA = union({Err},RAWDATA) 

Specification of data exchange mechanism 

We require that data is transmitted from the data source to the outputs of each commu- 
nications element in such a way that a majority vote over all those outputs correctly 
reflects the input. Our high level specification is thus that the system is a buffer. We 
can in fact show that the system represents a deterministic buffer, as follows: 

The initial state of an n place buffer is empty: 

BUFFER(n)  = BUFF(o,n) 

For any state of the buffer, if it is empty it must accept an input. 

BUFF(t.n)  = 
if  (null(t))  then source?x:RAWDATA -> BUFF(<x>,  n) 
else 

Otherwise, if the buffer is full it offers only an output. 
if  ((#(t))==n)  then sink! (head(t))  -> BUFF(taiKt),  n) 
The final case, where the buffer is neither full nor empty allows both input and output. 
else (source?x:RAWDATA -> BUFF(t~<x>,  n)) 

[] 
(sinklhead(t)  -> BUFF(taiKt),  n)) 

At the time of writing, the FDR tool requires that we specify a fixed maximum size 
for our specification: 
BUFF4 = BUFFERC4) 
(This restriction is not theoretically necessary and we expect to be able to relax this 
constraint in future versions of FDR2.) 

Model of OM Algorithm for Four FCRs 

The most complex basic component in the algorithm is the voting module: the following 
process takes inputs from the channels specified in the set sources and passes majority 
voted values to the channel sink 

Voting is encoded by maintaining sets of those channels which have supplied values 
for each data type, including error returns. Initially these sets are empty: 
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MAJ(sources,   sink)  = MAJORITY(sources,   {},  {},  {},  sink) 

While it is accepting input, the voter offers a choice over the inputs which it is still 
expecting to receive. When input is received, the channel is added to the appropriate 
set, and removed from the set of exepected inputs. 

MAJORITY(expected,   zeroes,   ones,  errs,  sink)  = 
if  (card(expected)  == 0)  then OUTPUT(zeroes,   ones,  errs,   sink) 

else  ([]  x  :  expected @ (x?y -> 
(if  (y==0) 

then MAJORITY(diff(expected,{x}), 
union(zeroes,{x}),   ones,  errs,  sink) 

else if  (y==l)  then 
MAJORITY(diff(expected,{x}), 

zeroes, union(ones,{x}),errs,sink) 

else 
MAJORITY(diff(expected,{x}), 

zeroes,  ones,union(errs,{x}),sink)))) 

When all expected inputs have been received, the voter supplies an output according to 
the size of the sets of inputs received. (For a single element data domain, we output 
the same (valid) value for any combination of valid inputs.) 
OUTPUT(zeroes,   ones,  errs,  sink)  = 

if  ((card(zeroes)==4)  or (card(zeroes)==3)) 
then sink!0 -> MAJ(Union(-[zeroes,   ones,  errs}),  sink) 
else sink!Err -> MAJ(Union({zeroes,  ones,  errs}),  sink) 

The other required component is a data distribution process. While we could write 
this in a sequential form similar to the voter, we feel the symmetry of the action is 
made clearer if we express this process as a parallel composition of simple buffers. 
These buffers synchronize on their input but not on their output, yielding the required 
interleaving behaviour. 

COPY = inp ? x:RAWDATA -> oO   !  x -> COPY 

The following channel definitions specify the input to, and outputs from the first-stage 
data distribution. Later instances of the data distribution process will be derived by 
renaming this first one: 

pragma channel inp  :  DATA 
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pragma channel oO, ol, o2, o3 : DATA 

INSERT = COPY [| {inp } |] 
C(C0PY[[ oO <- ol ]]) [| { inp } 
((C0PY[[ oO <- o2 ]]) [| { inp } 

(COPYEC oO <- o3 ]]))) 

I] 
I] 

The following channels define the external interfaces to our model: 

pragma channel source,  sink  :  DATA 

and these implement the connections between peers: 

pragma channel xcmid  :  DATA 
pragma channel xcOl,  xc02,  xc03 
pragma channel xclO,  xcl2,  xcl3 
pragma channel xc20,  xc21,  xc23 
pragma channel xc30,  xc31, xc32 

DATA 

DATA 

DATA 

DATA 

and finally, the channels which represent the input and output from each of the FCRs: 

pragma channel ain,  bin,   ein,  din  :  DATA 
pragma channel aout,  bout,  cout,  dout   :  DATA 

For brevity in later descriptions, we define sets of channels representing the inputs: 

XCIO = {xclO, xc20, xc30} 
XCI1 = {xcOl, xc21, xc31} 
XCI2 = {xc02, xcl2, xc32} 
XCI3 = {xc03,  xcl3,  xc23} 

and outputs 

XCOO = {xcOl, xc02, xc03} 
XC01 = {xclO, xcl2, xcl3} 
XC02 = {xc20, xc21, xc23} 
XC03 = {xc30,  xc31,  xc32} 

connecting each FCR to its peers. The total interface sets of each FCR are as follows: 
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ALPHAA = (Union({{ain,   aout},  XCIO, XCOO})) 
ALPHAB = (Union({{bin,  bout},   XCI1, XC01})) 
ALPHAC = (Union({{cin,   cout},   XCI2, XC02})) 
ALPHAD = (Union({{din,   dout},  XCI3, XC03})) 

We may now define processes representing each FCR. Each consists of a data dis- 
tributor communicating with a voter by a channel xcmid. The data distributor also 
provides outputs XCOn and the voter accepts inputs from set XCIn. 

FTLANEA = 
((INSERT [[inp<-ain, oO<-xcmid, ol<-xc01, o2<-xc02, o3<-xc03]]) 
[(union({ain, xcmid}, XCOO))I I(union({aout, xcmid}, XCIO))] 

(MAJ(union(XCIO,{xcmid}), aout))) 

\ {xcmid} 

FTLANEB = 
((INSERT [[inp<-bin, oO<-xcmid, ol<-xclO, o2<-xcl2, o3<-xcl3]]) 
[(union({bin, xcmid}, XCOD) I I (union({bout, xcmid}, XCI1))] 

(MAJ(union(XCIl,{xcmid}), bout))) 

\ {xcmid} 

FTLANEC = 
((INSERT   [[inp<-cin,   oO<-xcmid,   ol<-xc20,   o2<-xc21,   o3<-xc23]]) 
[(union({cin,  xcmid},  XC02))I I(union({cout,  xcmid},  XCI2))] 
(MAJ(union(XCI2,{xcmid}),   cout))) 
\ {xcmid} 

FTLANED = 
((INSERT  [[inp<-din,  oO<-xcmid,  ol<-xc30,  o2<-xc31,  o3<-xc32]]) 
[(union({din,  xcmid},  XC03))I I(union({dout,  xcmid},  XCI3))] 
(MAJ(union(XCI3,{xcmid}),  dout))) 
\ {xcmid} 

The fault-tolerant communication system as a whole is a parallel combination of these: 

FTBUFF = 
(((FTLANEA [ALPHAAI IALPHAB] FTLANEB) 
[union(ALPHAA, ALPHAB)I I union(ALPHAC,ALPHAD)] 

(FTLANEC [ALPHACI IALPHAD] FTLANED)) \ 
Union({XCI0, XCI1, XCI2, XCI3})) 
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The following sets define the interfaces of the first-level data distribution, the voting 
network just defined, and the majority voter used to complete the model. 

ALPHAIN = {source,  ain,  bin,   ein,  din} 
ALPHAFT = {ain,  bin,   ein,  din,  aout,  bout,  cout,  dout} 
ALPHAMJ = {sink,  aout,  bout,   cout,  dout} 

These components are combined as follows: 

SYSTEM = 
(((INSERT  [[inp<-source,   oO<-ain,   ol<-bin,  o2<-cin,   o3<-din]]) 

[ALPHAINI IALPHAFT] 
FTBUFF) 
[(Union({ALPHAIN,  ALPHAFT}))IIALPHAMJ] 
MAJ({aout,  bout,   cout,  dout},   sink))  \ ALPHAFT 

We hope, and indeed find, that BUFF4 C SYSTEM 

Now consider a failed processor, assumed not to be the source of single source data: 

RUN(A)  =  []   a:A 0 a -> RUN(A) 

FTLANED'  = RUN(Union({events(i)I   i<- union({din},XCI3)})) 
IN  CHAOS(Union({events(i)   I   i <- union({|dout|},XC03)})) 
Ml  RUN({c.Err  I  c <- union({dout},XC03)}) 

NB broken channel always allows error outputs. 

FTBUFF' = 
(((FTLANEA [ALPHAAlIALPHAB] FTLANEB) 
[union(ALPHAA, ALPHAB)I I union(ALPHAC.ALPHAD)] 

(FTLANEC [ALPHACIIALPHAD] FTLANED')) \ 
Union({XCI0, XCI1, XCI2, XCI3})) 

SYSTEM' = 
(((INSERT [[inp<-source, oO<-ain, ol<-bin, o2<-cin, o3<-din]]) 

[ALPHAINI IALPHAFT] 

FTBUFF') 
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ] 
MAJ({aout, bout, cout, dout}, sink)) \ ALPHAFT 
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We observe (for a single element data set + error value) that BUFFA Z. SYSTEM' 
(approx 2.4M state pairs). 

For a straightforward agreement, we use a simpler final specification 

pragma channel error 

AGREE(sources)  = AGR(sources,   {},  {},  {}) 

While it is accepting input, the voter offers a choice over the inputs which it is still 
expecting to receive. When input is received, the channel is added to the appropriate 
set, and removed from the set of exepected inputs. 

AGR(expected,   zeroes,   ones,  errs)  = 
if  (card(expected)  == 0)  then AGRTEST(zeroes,   ones,  errs) 

else  ([]  x  :   expected Q  (x?y -> 
(if  (y==0) 

then AGR(diff(expected,{x}), 
union(zeroes,{x}),   ones,  errs) 

else if  (y==l) then 
AGR(diff(expected,{x}), 

zeroes,  union(ones,{x}),errs) 
else 

AGR(diff(expected,{x}), 
zeroes,  ones,union(errs,{x}))))) 

AGRTEST(zs,os,es)  = 
if card(zs)  >= 3 or card(os)  >= 3 then 

AGREE(Union({zs,os,es})) 
else error -> STOP 

SYSAGREE = 
(((INSERT  [[inp<-source,   oO<-ain,   ol<-bin,   o2<-cin,  o3<-din]]) 
[ALPHAINI IALPHAFT] 
FTBUFF') 
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ] 
AGREE(-[aout, bout, cout, dout})) \ ALPHAFT 

SPECAGREE = CHAOS({|source,sink|}) 
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Similar models can be used to verify validity directly by replacing the voter with 
a specific observer component. If the observer signals an error whenever the valid 
outputs do not calculate the correct value, we may demand that no such errors are 
never signalled, and so establish validity. Agreement can be specified in this style. 

4    Refining the Architecture 

4.1     Exploiting Symmetry 

Whether verification is carried out by hand or mechanically, analysis of detailed mod- 
els of the fault-tolerant processor will involve significant effort. Prom the structure of 
the model, however, we can see a very clear symmetry between the four components 
of the network. 

We can exploit this symmetry in a number of ways, the most obvious being a 
reduction in the number of possible failures to be considered. If the network is 
operating in a fully symmetric manner, it obviously does not matter which of the 
processors is considered to fail, and we may thus isolate failures to an arbitrary fixed 
FCR. If the operation is asymmetric, as in the distribution of single-source data, we 
way still exploit the three-fold symmetry of the receiver processes and model single 
faults by only two cases: either the transmitter fails, or one of the receivers does. In 
the latter case the identity of the failed lane can again be arbitrary. 

A more powerful technique exploits not only the large-scale symmetry of the 
network, but also takes advantage of the symmetric behavior of the components. 
Suppose, for example, that the data distribution process is entirely symmetric as 
regards the order and manner in which it makes its output available, as is the case 
for the process INSERT in the model of Section 3. Recall the data-flow shown in 
Figure 3; if we concentrate on the values produced by any one of the local voters, we 
see that it depends on only four of the data interchanges (i.e. the value from its local 
input and values received from its three peers. The relevant paths are highlighted 
in Figure 4. The behavior of each data distribution phase when we consider only 
one of its outputs will be significantly simplified, and indeed in many cases1 it will 
degenerate to a simple form of buffer. The overall system which we must analyse to 
predict the output of a given voter reduces to that shown in Figure 5. We can use this 
simplification to allow us to prove properties of the whole system by considering only 
a single voter. Suppose we show that the output of the voter in the figure agrees with 
its input provided that no more than one of the preceding buffers (representing the 
data distribution operation of each FCR) is faulty. Unless we use explicit assumptions 
about which voter we consider and which buffer is faulty, our reasoning must then 

typically those where blocking one output does not prevent further inputs and outputs on other 
channels. 
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Figure 4: Data-flow to a Single Voter 
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Figure 5: Analysing the Output of a Single Voter 
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be valid for any functioning voter, and any single failure: we have established that 
all functioning voters agree with the input. In practice, of course, not all the data 
distributors will be identical in their relationship to the voter, because one of them 
will be contained in the same FCR, and may be implemented by the same processor. 
However, presence of a Byzantine fault in this distributor will then imply a potential 
fault in the voter, and we do not need to (and cannot expect to) establish that FCRs 
behavior. 

This approach allows our models to concentrate on the behavior of a single com- 
ponent in our system, rather than having to model and analyse four identical replicas. 
We shall use this technique to demonstrate agreement propeties of the system in the 
following section. 

4.2    Verifying the Agreement Property 

In Section 3, we commenced our analysis with the system's validity property, as 
being a more practically motivated and in some respects stronger condition than the 
agreement property. (As all functioning voters yield the value provided by the input, 
it is obvious that all such nodes do agree!) The basic agreement property is still 
important, however, as it gives us assurance of consistency between receivers, even 
if a data source becomes faulty. We can check this property by changing the earlier 
network as follows: 

• The first-stage data distributor is replaced by a faulty component (as we assume 
that the data source may have faults). 

• One of the communications nodes is also assumed faulty (as we assume that 
one node shares an FCR with the data source). 

• The final voter is replaced by a process which observes the values from the 
communications nodes, and signals an error if any cycle of communication does 
not include all working channels in agreement, but which does not actually 
distinguish which value is agreed upon. We may verify that the system satisfies 
the agreement property simply by showing that the error condition can never 
arise. 

We can also exploit the symmetry of our system as described in the previous section, 
reducing the number of voters actually modeled to two: by showing that these are 
always in agreement we demonstrate agreement for any pair of fault-free outputs. The 
following variant of the model introduced in Section 3 incorporates these features: 

ftagree.csp: Model demonstrating agreement of 4-FCR Oral-Messages algorithm 
in the presence of a single Byzantine fault. 
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(c) Formal Systems Design & Development, Inc, 1994 Originated by: Dave Jackson. 
This version: 
— $Id:  ftagree.csp.v 1.3 1995/04/25 00:17:16 dave Exp $ 

Once again, the basic data types are boolean: 
RAWDATA = {0,1} 
We also define an error value Err (which can be any value not in RAWDATA). 
Err = 99 
DATA = union({Err},RAWDATA) 

Specification of data exchange mechanism 

We define an event which indicates that a disagreement has been detected: 

pragma channel Error 

This will be the only output of our system, and our specification insists that even this 
should not occur, so our ultimate requirement is just that the system is equivalent to 
the process which performs only input actions: 

SPEC = RUN({source.i   I   i <- RAWDATA }) 

Model of the OM algorithm for two voters of a 4-FCR system 

The voters are identical to those of the previous model: 

MAJ(sources,   sink)  = MAJORITY(sources,   {},  {},   {},   sink) 

MAJORITY(expected,  zeroes,  ones,  errs,  sink)  = 
if  (card(expected)  == 0) then OUTPUT(zeroes,  ones,  errs,  sink) 

else  ([]  x  :  expected @ (x?y -> 
(if  (y==0) 

then MAJORITY(diff(expected,{x}),   union(zeroes,{x}),   ones,   errs,   sink) 
else if  (y==l) then 

MAJORITY(diff(expected,{x}),  zeroes, union(ones,{x}),errs,sink) 
else 

MAJORITY(diff(expected,{x}),   zeroes,   ones,union(errs,{x}),sink)))) 

OUTPUT(zeroes,   ones,  errs,   sink)  = 
if  (card(ones)  < card(zeroes)) 
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then sinklO -> MAJ(Union({zeroes,  ones,  errs}),  sink) 
else sinkll -> MAJ(Union({zeroes,   ones,  errs}),   sink) 

Each of the 4 FCR 's will still provide data to the voters, but we are now concerned 

with only two of the four outputs: 

COPY = inp ? x:RAWDATA -> oO   !  x -> COPY 

pragma channel inp  :  DATA 
pragma channel oO,  ol,  o2,  o3  :  DATA 

Insert =    (COPY  [I  {inp}   I]   (C0PY[[ oO <- ol ]])) 

Source =    COPY  [I   {inp }   |] 
((C0PY[[ oO <- ol ]]) [I { inp } |] 
((C0PY[[ oO <- o2 ]]) [I { inp } |] 
(C0PY[[ oO <- o3 ]]))) 

The overall structure of the model is unmodified: 

Overall inputs and outputs 

pragma channel source,   sink  :  DATA 

Peer-to-peer communications 

pragma channel xcmid  :  DATA 
pragma channel xcOl,  xc02,  xc03 
pragma channel xclO,  xcl2,  xcl3 
pragma channel xc20,  xc21,  xc23 
pragma channel xc30,  xc31,  xc32 

DATA 

DATA 

DATA 

DATA 

The data source and sink of each communications node 

pragma channel ain,  bin,   ein,  din  :  DATA 
pragma channel aout, bout,  cout,  dout  :  DATA 

And the interface sets of each FCR: 

XCIO = {xclO,  xc20,  xc30} 
XCI1 = {xcOl,  xc21,  xc31} 
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• 

• 

XCI2 = {xc02,   xcl2,   xc32} 
XCI3 = {xc03,  xcl3,  xc23} 

XCOO = {xcOl, xc02, xc03} 
XCOl = {xclO, xcl2, xcl3} 
XC02 = {xc20, xc21, xc23} 
XC03 = {xc30, xc31, xc32} 

ALPHAA = (Union({{ain,  aout}, XCIO, XCOO})) 
ALPHAB = (Union({{bin,  bout}, XCI1, XCOl})) 
ALPHAC = (Union({{cin,   cout}, XCI2, XC02})) 
ALPHAD = (Union({{din,  dout}, XCI3, XC03})) 

We now define processes representing the FCR 's. According to their role in our model, 

we have three representations: 

A functioning FCR whose output we study, with data distribution and voting compo- 

nents; 

A functioning FCR whose output is not analysed, containing just the data distribution 

element; and 

• A faulty FCR whose data distribution element is unreliable (and whose voted output 

we do not model). 

Two fully-modelled FCR's 

FtLaneA = 
((Insert [[ inp <- ain, oO <- xcmid, ol <- xcOl ]]) 
[(union({ain, xcmid}, XCOO))I I(union({aout, xcmid}, XCIO))] 

(MAJ(union(XCIO,{xcmid}), aout))) 

\ {xcmid} 

FtLaneB = 
((Insert   [[ inp <- bin,  oO <- xcmid,  ol <- xclO ]]) 
[(union({bin,  xcmid},  XCOl))I I(union({bout,  xcmid},  XCI1))] 
(MAJ(union(XCIl,{xcmid}),  bout))) 
\ {xcmid} 

One partially-modelled non-faulty FCR: 
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FtLaneC = 
(Insert  [[ inp <- ein,  oO <- xc20,  ol <- xc21]]) 

And a faulty FCR, which ignores all inputs and may produce arbitrary valid outputs, 
and which may also be observed to be faulty: 

FtLaneD = RUN(Union({events(i)I   i<- union({din},XCI3)})) 
IN   CHAOS(Union({events(i)   I   i <- union({|dout|},XC03)})) 
Ml  RUN({c.Err   I   c <- union({dout},XC03)}) 

where RUN is the process which simply performs arbitary sequences of actions from 
the specified set: 

RUN(A)  =   []   a:A @ a -> RUN(A) 

The fault-tolerant communication system as a whole is a parallel combination of these, 
identical to the previous model: 

FtBuff = 
(((FtLaneA  [ALPHAAlIALPHAB]   FtLaneB) 
[union(ALPHAA,   ALPHAB)I|union(ALPHAC,ALPHAD)] 

(FtLaneC   [ALPHACllALPHAD]   FtLaneD))  \ Union({XCI0,  XCI1,  XCI2,  XCI3})) 

ALPHAIN = {source,  ain, bin,  ein,  din} 
ALPHAFT = {ain,  bin,   ein,  din,  aout,  bout,   cout,  dout} 
ALPHAMJ = {Error,  aout,  bout,   cout,  dout} 

Our observer process has a similar form to the majority voter, but can be simplified 
because we consider fewer inputs to it, and it need generate only the Error signal, 
when required. 

Observer = aout ? x -> bout ? y -> Check(x,y)   [] 
bout ? x -> aout ? y -> Check(x.y) 

Check(x,y)  = if x == y then Observer else Error -> STOP 

The system structure is identical to that of the earlier model, with the faulty data 
source and observer replacing the data distribution and voting elements: 
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System = 
(((Source [[inp <- source, oO <- ain, ol <- bin, o2 <- ein, o3 <- din]]) 

[ALPHAINI IALPHAFT] 

FtBuff) 
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ] 

Observer) \ ALPHAFT 

We may now verify that all behaviors System are behaviors of SPEC. 

5    Fault-management & Application Programs 

We have demonstrated in the preceding sections that tolerance to Byzantine faults 
can be achieved by designing our network of replicated processors to implement the 
Oral Messages algorithm. This tolerance is a property of the network and its commu- 
nication pattern, and is thus independent of the actual application program, provided 
that sufficient data is exchanged and voted upon to keep the replicated copies of the 
program in agreement. 

The second goal of our approach is to tolerate transient faults, including (but not 
limited to) those which affect a large proportion of our network for a brief interval. 
Designing and verifying strategies to achieve this aim will necessarily involve a more 
detailed knowledge of the operation of the application program than we have used in 
the earlier parts of this document. In particular, we will need knowledge of the tasks 
executed by the application program and their data dependency and scheduling con- 
straints. We will adopt the view that real-time applications are typically constructed 
as a set of atomic tasks, exchanging data by means of shared variables, and subject 
to data-dependency and timing constraints as discussed in [9]. 

5.1     Permuted scheduling 

One method identified in [1] to reduce the impact of multi-processor transient faults 
is to ensure that our replicated processors execute different tasks at each instant: 
rather than fix a schedule for executing application code, we define a set of permuted 
schedules. We intend that if a transient fault disrupts the tasks executing at a given 
time on a number of processors, then there should still be enough redundant execu- 
tions of those tasks completed at other points in the same scheduler cycle for valid 
results to be obtained by voting. 

5.1.1    Validity of Permutation 

The potential benefits of permuted schedules can be verified using a relatively straight- 
forward, if potentially unwieldy CSP model. The model given below characterize the 
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Communications element of a system by a series of VOTER processes, each con- 
cerned with validating the output of some task. They repeatedly obtain information 
(on a channel task) from the execution of a task; for simplicity we assume that it 
is clear from a boolean flag passed along this channel whether or not the execution 
succeeded2. Provided that at least two successful executions occur in each cycle, the 
voter will successfully agree on the output values of that task (signalled by the pass 
event) and wait for the end of a frame (indicated by the sync event). 

The actual permuted schedules can be modeled in an abstract way by providing 
each task with a "source" of executions - we do not need to model the actual schedules 
explicitly, but only to capture the condition which a reasonable set of permutations 
will satisfy in the presence of transients: each task will be executed four times in 
each cycle, of which no more than one will be corrupted. This importance of this 
model is that in later documents we will be able to constrain these sources by placing 
them in parallel with particular schedulers, and verify that those schedulers do meet 
the following correctness condition: We can combine source processes for each of the 
tasks under consideration with the voters, and demonstrate that the voters are always 
satisfied that sufficient executions have succeeded. In terms of the model below we 
must show that each frame contains a pass event for all tasks. 

timing, csp: A model supporting verification of permuted schedules and 
associated voting. 

(c) Formal Systems Design & Development, Inc, 1994 

Originated by: Richard Chapman / Michael Goldsmith This version: 
~ $Id:  timing.csp,v 2.0  1994/12/16  17:44:03 dave Del $ 

Basic type definitions: 

TASK = {0,1,2,3,4} The set of task names 
BOOL = { true,  false } and validity values 

Channel declarations: 

The following channels indicate completion of a task instance, and pass a flag indi- 
cating its success or failure: 
pragma channel task  :  TASK  .  BOOL 

pass is used to indicate successful acquisition of sufficient correct copies of the output 
of a task by a voter 

2This is simply an abstraction of the actual voting and comparison of data. 
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pragma channel pass   :  TASK 

pragma channel sync 
indicates the end of a frame, and 

pragma channel work 
is an interleaved event simply representing the occurence of some internal computation 
(typically related to comparing the results of different instances of a task). 

The communication part of the system defines a voting process for each task in the 

system: 

COMMS = ((((VOTERCO,   2) 
[|  {|  sync   |}   |]  V0TERC1,  2)) 
[|   {|   sync   1}   |]  V0TERC2,  2)) 
[|   {|   sync   |}   |]  V0TERC3,  2)) 
[|   {|   sync   1}   13  V0TERC4,   2)) 

The voters synchronize on the sync signal, ensuring that all tasks are validated with 
respect to the same cycle boundaries. 

The voter process itself accepts inputs on task, and when sufficient valid instances 
have been counted, it outputs a pass signal recording the task number. 

VOTER  (i,  n)  = 
task.i ? ok -> 

if ok 
then if n == 2 

then VOTER (i,   1) 
else if n == 1 
then work -> pass   !  i -> FRAME (i) 
else work -> V0TER(i, n) never happens 

else work -> VOTER (i, n) 

After successful output, the voter waits for completion of the cycle. It is still prepared 
to accept (and discard) further completion signals. 
FRAME  (i)  = 

(sync -> VOTER (i,  2))   []  task.i ? any -> work -> FRAME  (i) 
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The tasks are represented by a combination of source processes, each enforcing the 
condition that sufficient correct instances of the appropraite task occur in each cycle. 
Their only interaction at present to to synchronize on the end-of-cycle signal. 

Future models will exploit this framework by combining particular scheduler patterns 
in parallel with these processes. 

SOURCES = ((((SOURCE(O) 

Cl {1 sync 1} |] SOURCE(D) 

Cl {1 sync 1} |] S0URCEC2)) 

Cl {1 sync 1} |] SOURCE(3)) 

[1 {1 sync 1} |] SOURCE(4)) 

At the start of each cycle, four instances of the task are required, and no incorrect 
instances have been observed. 

SOURCE  (i)  = NOTYETBROKEN  (i,  4) 

This process represents a source which has yet to observe an unsuccessful execution. 
It permits a synchronization signal and a return to its initial state if all four instances 
of the task have been observed, (n holds the number yet to be seen). If only one task 
remains to complete, it will allow the end-of-frame signal, assuming the last instance of 
the task to have failed. In other cases, it waits for a completion signal and decerments 
the counter if the execution succeed, or moves to the ALREADY BROKEN state if 
it failed. 

NOTYETBROKEN (i, n) = 
if n == 0 
then sync -> SOURCE (i) 

else if n == 1 
then sync -> SOURCE (i) [] task.i ? ok -> sync -> SOURCE (i) 

else task.i ? ok -> 
if ok 
then NOTYETBROKEN (i, n-1) 
else ALREADYBROKEN (i, n-1) 

In each cycle, once a single erroneous execution has been observed, the remaining n 
must complete successfully. 

ALREADYBROKEN  (i,  n)  = 
if n == 0 
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then sync -> SOURCE (i) 
else task.i   !  true -> ALREADYBROKEN  (i,  n-1) 

In the current version, our system model is simply the combination of the task execu- 
tion part and the communication part. 

SYSTEM = SOURCES   [I   {I   sync,  task   1}   |]   COMMS 

The model show above does have some practical disadvantages, however. The 
computation (represented by work), and the task completion (task) signals are ar- 
bitrarily interleaved, and the number of possible states whose behavior must be con- 
sidered (either by automatic or manual analysis) grows very rapidly as the number 
of tasks considered increases. We can reduce this growth by noting that the voters 
would in practice differentiate between processing and communication, possibly re- 
fusing to exchange more data until the work associated with previous communication 
was complete. In the CSP model, we wish to distinguish the work events from the 
task communications by a difference in priority. 

Encoding this distinction in a form suitable for use with the current FDR tool 
is quite difficult. We must consider the voters as constituting a single process which 
maintains a vector of information, holding a count of executions of each task in each 
element of the vector. This allows us to replace the interleaving of communications in 
the previous model with a sequential form which maintains the desired relationship 
between task, work and pass events. A model which uses the SML embedding 
techniques supported by FDR to implement this scheme is given in Appendix A. 

A much more satisfactory model incorporating priorities to distinguish internal 
and external activity in a system or sub-system can be built on the basis of Dr Gold- 
smith's work described in another part of this report [5]. The FDR tool currently 
under development ([4]) will, when extended by the prioritization operator developed 
by this project and discussed in [5], allow such models to be written in the simpler 
style of the model given above, while maintaining the semantic distinctions and prac- 
tical efficiency of that given in Appendix A. Such a framework will be essential for 
the extension of this framework into a tool for checking the transient-tolerance of a 
specified set of permutations of a schedule. 

5.1.2    Permitted Permutations 

For the use of permuted schedules to be valid, we must be able to find an appropriate 
number of viable schedules for the task set which makes up the application program. 
This potentially difficult task is subject to some non-obvious constraints, as we will 
show here. Consider the data dependence relation and four schedules in Figure 6. 
Assume all tasks take equal time to execute. The instance of task one in any given 
frame for processor four computes a value that will not be computed by the other 
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three processors until the beginning of the next frame. Suppose that we are voting on 
task seven only, and that processor four's value for task seven in some frame turns out 
to be in error. That means that the value already computed for task one for the next 
cycle must also be invalidated. Somehow, processor four must at some future point 
"catch up" - compute values for tasks one through six, since they are not voted, and 
be able to compute a valid value for task one in advance of the other three processors 
if it is to resume executing its schedule. Processor four will never be able to do it, 
since to do so it must after some number of frames k have computed 7k + 1 values in 
Ik time slots. 

Processor 1: 
...11234567112345671. 

Processor 2: 
...123651 47123651471 
Processor 3: 
... 131 26457131 26457I 
Processor 4: 
...12536471 12536471 I. 

Figure 6: Disallowed set of permutations 

Consequently we require permissible permuted schedules to obey the property that 
within a single frame the instances of a task on all replicated processors correspond 
to the same iteration. That is, if we let Op

k(ti) represent the output from task *,- on 
processor p in frame k, then in the absence of failures, 

VJfc.Vj/ € Processor s.Op
k\ti) = Op

k{U) 

5.2    Voting in permuted schedules 

The standard method of implementing systems whose state information is maintained 
by an interactive consistency algorithm such as Oral Messages is to arrange that 
applications use the agreed value of a state variable in place of the locally calculated 
one when a task requires that variable as input. In effect, we must arrange our voting 
and computation in such a way that a sufficient set of state values are always agreed 
by voting before they are used by tasks which depend on them. 

These constraints further complicate the process of finding suitable schedules for 
a set of redundant processors which, as the previous section and reference [9] show, 
is already subject to significant constraints. 

We therefore seek to relax this "vote before use" condition, in order to introduce 
sufficient flexibility to support permuted schedules and to gain other benefits: 
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• Relaxing the restriction places fewer constraints on the sequence in which tasks 
can be executed, potentially reducing any need for one processor to be idle while 
others compute values which need agreement. 

• In systems where computation (by the application) and communication (which 
constitutes much of the voting process) use different resources, they can be over- 
lapped to a greater extent if the strict ordering is relaxed, leading to significant 
performance benefits. 

Rather than requiring the replicated processors to vote on the outputs of all tasks, 
we only specify voting on outputs to actuators and on a set of tasks satisfying a 
minimal voting condition ([11], p. 60), which we call a basis set of tasks. If permuted 
schedules were not permitted, voting could occur immediately upon completion of the 
task to be voted (by all the processors) which should happen simultaneously, given 
the requirement that we know absolute execution times for all tasks ([1], p. 1). 

However, if permuted schedules are permitted, voting must be delayed at least 
until a plurality of processors have computed some output value for the task to be 
voted. The point within a frame at which a given basis task's output can be voted 
is statically determinable and thus the communication events necessary to carry out 
the voting can be incorporated into the schedule. 

A consequence of the necessary delay in voting is that it becomes likely that a 
processor that is the first to run some basis task will have to use its locally computed, 
not yet voted, value for the output of that basis task until the voted value becomes 
available. If the voted value agrees with the locally computed value, all is well, but 
if the locally computed value is invalidated by the vote, the processor must begin 
recovery of a number of tasks. The results of not only the voted task but also all 
other comparable tasks (either as ancestors or descendants) in the transitive closure 
of the data dependence relation between tasks [7] become invalid, as in the example of 
Figure 7. Upon invalidation of any tasks, there must exist some sequence of actions 
that the recovered processor can take to restore all invalidated tasks to having valid 
input data at the appropriate times in each frame, according to its schedule. 

We can shorten the waiting period required for voting by not requiring a task 
to wait for results from all four replicated processors. Two values in agreement are 
enough evidence for a processor to conclude that it has the voted value, so why 
wait for all four? However, a processor that proceeds before receiving input from all 
processors contributing to a vote must ensure that those messages it plans to ignore 
are properly dealt with if they should arrive at some future point. We propose that 
a processor deciding to ignore communications from some other processors should 
spawn a sacrificial buffer process that will catch those messages when they do arrive, 
or notify the processor if they never do (that is, if the buffer process receives another 
request from its own processor to wait on a value from the peer processor before it 
has received a first value from the peer). This fact is evidence of a failure either in 
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inv = task output 
invalidated 

val =task output 
remains valid 

data dependence 
between tasks 

Figure 7: Tasks that must be invalidated 

the peer processor or the link. We outline a specification for such a buffer and the 
code that the processor spawning the buffer must run in the next section of this note. 

There are obviously a number of potential difficulties which relaxing the voting 
pattern in this way may introduce. It is obviously vital that the tolerance of Byzantine 
faults should not be reduced, and indeed this fact does follow from the properties of 
the network shown in Section 3. Because we do eventually obtain as much information 
on the correctness of a value as is available in the straight-forward implementation 
of the OM algorithm our ability to detect and correct errors is unaltered, although 
detection of an error may be slightly delayed when compared with a fully sequential 
voting arrangement. 

The most significant penalty incurred by the change is that transient errors in 
the data held by a processor are no longer corrected "automatically": if state data is 
always agreed with a processor's peers before being used then a single corrupt value 
will not be passed to any instance of the tasks which use it, and if the fault causing 
corruption is transient it will be corrected when the value is next modified. This 
is obviously not the case if a processor continues using the corrupt value without 
checking it. The process of recovery from transient errors will be considered further 
in a later section. 

6    Distributed Models of a Voter 

Below we develop a model of a voting mechanism that can be used when processors 
are running permuted schedules. Rather than requiring the communications processor 
to spawn a process to catch "late" data values transmitted by peer processors, we 
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add four local processes, running concurrently with the voting mechanism, which we 
call smart buffers. Each smart buffer is responsible for reception of messages from 
one of the peer processors, for maintaining the local processors' decision about the 
state of that peer processor (good, faulty, or dead), and for conveying information 
about recent communications with the peer processor when requested. 

Buffers 

(NONEorBOTH   or PARENT or PEER) 

Local 
Processor 

(UNDECIDED 

or DECIDED) 

sink 

outside .0 

outside. 1 

outside.2 

outside.3 

Figure 8: Local processor and buffers for communication with peers 

The buffer has three major states. The current state is determined by which of 
the local (or parent) processor or the remote (or peer) processor it has last com- 
municated with. The communications processor has two major states. We say it is 
decided if it has determined the valid value for its task for this frame as a result of 
comparisons between values sent by the remote processors for the task's value this 
frame. Otherwise it is undecided . 

sb.csp: Distributed model of communication and voting 

(c) Formal Systems Design & Development, Inc, 1994 

Originated by: Richard Chapman This version: 
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-- $Id:   sb.csp,v 2.0 1994/12/16  17:44:03 dave Del $ 

There are four processors, numbered 0 to 3. 

FOUR = {0,   1,  2,  3} 

The value computed by a task may be one of two valid values, or a mesage from a 
processor to ignore its value 

DATAVAL = { one,  zero   ,   ignoreme } 

A processor may assign one of its peers any of the following status values 

STATUSVAL = { bad,  ok,  dead } 

The system present at each processor consists of the process running on the processor 
itself, plus four concurrent processes representing buffers to receive values from the 
remote processors (we could handle the value computed locally as a special case, but 
do not). The 4 buffer processes send data values to the local processor over the offer 
channels 

pragma channel offer  :  FOUR  .  DATAVAL 

The local processor can communicate its voted value for the task to the buffers over 
the parent channels 

pragma channel parent   :  FOUR  .  DATAVAL 

Channel last is used by a buffer to communicate the status of the peer with which it 
communicates to the local processor. 

pragma channel last  :  FOUR  .  STATUSVAL 

Sink is the channel on which the processor broadcasts a valid value for a task to the 
outside world, once per frame 

pragma channel sink  :  DATAVAL 

Synchronization signal sent between successive iterations of a task: 

pragma channel frame 
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channels for peer processors to send values to sacrificial buffers: 

pragma channel outside  :  FOUR .  DATAVAL 

Code for the local processor to interface with the sacrificial buffer 

A processor determines the valid value for a task by receiving the values computed by 
its peer processors and comparing that value with its own locally-computed value for 
that task. Once a processor has received the same value from two processors (one of 
which could be itself), it can conclude that the value it received more than once is the 
valid value. 

At any time, the communications processor will be running one of two processes (UN- 
DECIDED or DECIDED) for each task. 

The process UNDECIDED represents the state of the communications processor when 
it has not yet received two values in agreement for some task. The set I is the set of 
other processors from which the processor has yet to receive a value, and the set A is 
a set of ordered pairs (processor, value) that have been received. If a peer processor 
sends an ignoreme message, its number is removed from I. If a peer processor sends 
any other data value, that value is compared to previously received values. If that value 
is found in the list, the processor concludes that it has the valid value and behaves like 
process DECIDED (keeping track in its first parameter of which peer processes from 
which it has not yet heard), else it adds the value to the set of received values and 
behaves like UNDECIDED 

UNDECIDED  (I,  A,  untimed)  = 
([]   i:   I ® offer.i ? x -> 

if (x == ignoreme) then 
UNDECIDED (diff (I, {i}), A, untimed) else 

if (member (x, { head (tail (xl)) I xl <- A })) then 
DECIDED (diff (I, {i}), x, untimed) 

else 
UNDECIDED(diff(I,{i}), union(A,{ <i,x> }), untimed) 

) 

Once a process has decided the valid value for a task (parameter x in the process 
DECIDED, below) , it can use that value for further computation, but must rely on a 
process (a concurrently running "smart buffer") to handle reception of the remaining 
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transmissions of values for that task by the other peer processors (whose numbers are 
in set I). The smart buffer must also be responsible for notifying the local processor if 
any peer processors fail to respond 

As soon as the local processor decides the valid value, it sends value over channel 
parent to the buffers, who will use it in determining the status (good, bad, or dead) of 
the peer processors 

When the local processor has finished notifying the buffers, it announces the value it 
determined to be valid to the outside world over channel sink, then waits for the frame 
synchronization event and starts over. 

DECIDED  (I,  x,  untimed)  = 
([]   i:I <3 parent.i   !  x -> last.i ? s -> 

DECIDED  (diff  (I,  {i}),  x,  untimed)) 

[] 
(if (empty (I)) then 

sink ! x -> 
if untimed 
then frame -> UNDECIDED (FOUR, {}, untimed) 
else UNDECIDED (FOUR, {}, untimed) 

else STOP) 

Code for a smart buffer running in parallel with a processor 

The smart buffer has one of several states depending on whom it heard from last: the 
PARENT (local) processor, the PEER (remote or local) processor, or NONEorBOTH 
(ready to receive a message from either). 

Initially, a smart buffer has not heard either from its parent (via channel parent) or 
from any peer processor (via channel outside). It is ready to communicate via either 
channel, and change its state based on which it hears from first 

NONEorBOTH  (i,   s,  untimed)  = 
(parent.i ? x -> last.i   !  s -> PARENT (i, x, untimed)) 
[] 
(outside.i ? y -> PEER (i, y,  s, untimed)) 

A smart buffer that has last heard from its parent knows the value the parent decided 
was valid (x), and is waiting to hear that value from the PEER processor. If it does 
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hear a value from the peer, it computes a statusvalfor the peer (okay or bad, depending 
if the value sent by the peer is the same as that decided upon by the parent) and resumes 
listening for either the parent or the peer 

If the frame event occurs before the buffer hears from the peer, it assumes the peer 
is dead and changes its status accordingly. If frame events are not being used, if the 
buffer hears from the parent again before hearing from the peer, it sends a message to 
the parent (over channel last) indicating that it believes the peer is dead 

PARENT  (i, x, untimed) = 
(outside.i ? y -> 

if untimed 
then frame -> 

NONEorBOTH  (i,  if x==y then ok else bad,  untimed) 
else 

NONEorBOTH (i,  if x==y then ok else bad, untimed)) 

[] 
if untimed 
then frame -> NONEorBOTH  (i,  dead,  untimed) 
else parent.i ? xx -> last.i   !  dead -> PARENT(i,  xx,  untimed) 

A buffer that has heard from the peer processor sends the value it heard to the parent 
via the offer channel. After sending an offer it waits for the frame synchronization 
event and then resumes waiting to hear from either the parent or the peer 

If the processor receives a value from the parent before it can offer the value from 
the peer to the parent, obviously the parent already had enough values from other 
buffers to make a decision, so the buffer sends the status value from the last frame 
to the processor and then computes a new status value for this frame, arrived at by 
comparing the value received from the parent this frame with the value received from 
the peer this frame, then waits for the frame synchronization event, and then listens 
for either the parent or peer at the start of the next frame 

PEER (i,  y,  s, untimed) = 
(offer.i   !  y -> 

if untimed 
then frame -> NONEorBOTH (i, ok, untimed) 

else NONEorBOTH (i, ok, untimed)) 

[] 
(parent.i ? x -> last.i ! s -> 

if untimed 
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then frame -> 
NONEorBOTH  (i,   if x==y then ok else bad,  untimed) 

else 
NONEorBOTH (i,  if x==y then ok else bad, untimed)) 

The system consists of a processor (initially running UNDECIDED (FOUR,,true) and 
four smart buffers, one for each of the four peer processors. We could optimize this 
to three and handle the locally computed value entirely within the local processor if 
desired 

uSYSTEM = UNDECIDED  (FOUR,  {},  true) 
[|  {|  last,  offer, parent,  frame  1}   |] 
(((( NONEorBOTH  (0,  ok,  true)) 

[|   {frame}   I]  NONEorBOTH  (1,  ok,  true)) 
[|   {frame}   |]  NONEorBOTH  (2,  ok,  true)) 
[|   {frame}   |]   NONBEorBOTH  (3,  ok,  true)) 

When we hide the communication between the four buffers and the local processor we 
get: 

UntimedSystem = uSYSTEM \ {|   last,  offer,  parent   1} 

If we dispense with the frame synchronization events: 

tSYSTEM = UNDECIDED  (FOUR,   {},  false) 
[|  {|  last,  offer, parent   |}  |] 
((        NONEorBOTH(0,ok,false)   III  NONEorBOTHd,ok,false) 

Ml  NONEorBOTH(2,ok,false)   III  N0NEorB0TH(3,ok,false)) 
[|   {|  frame   1}   |]   frame -> ZERO) 

SystemWithoutTiming = tSYSTEM \ {I   last,  offer,  parent   |} 

In order to assert that frame never occurs, the process above includes a transition to 
ZERO if frame should ever occur. Because ZERO is the "worst-possible" process in 
the Failures-Divergence model, this will result in tSYSTEM failing any non-trivial 
refinement check, should frame occur. 

ZERO = ZERO   ri   ZERO 

The bottom process is represented as a non-deterministic choice for purely technical 

59 



reasons. (FDRcannot itself successfully compile the more usual definition 
— ZERO = ZERO). 

The specification for the System described above 

MAJORITY'S three parameters are sets of processes. I represents the processors which 
have not contributed a value for the task this frame, while Zeroes and Ones are re- 
spectively, the sets of processors that have contributed a value of zero and a value of 
one this frame (note that a processor sending an ignoreme message drops out of I 
without ever appearing in Ones or Zeroes that frame) 

If the size of Zeroes exceeds one, the specification may output a value of one on channel 
sink. It may output a zero on sink if the size of Zeroes exceeds one. If both sets exceed 
one in size, the specification produces a nondeterministic result 

If the set I is not empty at the time the specification sends its decision on the valid 
value on channel sink, the specification must behave like process CHOMP until the 
end of the frame 

CHOMP acts as a buffer to receive any values transmitted by the peer processors after 
the local processor has produced output during that frame on channel sink (in the 
system, the smart buffers handle this) 

MAJORITY  (I,  Zeroes,  Ones)  = 
(outside ? i:I ? x -> 

'        if  (x == zero) 
then MAJORITY  (diff  (I,   {i}),  union  (Zeroes,  {i}),  Ones) 

else if  (x == one) 
then MAJORITY(diff(I,  {i}),  Zeroes, union(0nes,  {i})) 
else MAJORITY(diff(I,  {i}),  Zeroes,  Ones)) 

[] 
((if 1 < card (Ones) 
then sink ! one -> CHOMP (I) 

else STOP) 

l"l 
if 1 < card (Zeroes) 
then sink ! zero -> CHOMP (I) 

else STOP) 

[] 
if empty (I) 
then (if card (Ones) < card (Zeroes) 
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then sink ! zero -> CHOMP (I) 
else if card (Zeroes) < card (Ones) 
then sink ! one -> CHOMP (I) 
else (sink ! zero -> CHOMP (I) l"l 

sink ! one -> CHOMP (I))) 

else STOP 

CHOMP(I) = 
(outside ? i:I ? x -> CHOMP (diff (I, {i}))) 

[] 
frame -> MAJORITY  (FOUR,   {},   O) 

Initially, no processors have sent values of one or zero, and the specification is waiting 
on a value from all four processors 

SPEC = MAJORITY (FOUR, {}, O) 

Here we model the data distribution phase. A value on channel source is copied to 
each of the four outside channels by processes INJECTOR and SPREAD. A frame 
synchronization event is expected between sucessive inputs on channel source (and 
consequently between any successive pair of outside, i events). 

pragma channel source   :  DATAVAL 

INJECTOR = source ? x -> SPREAD  (FOUR,  x) 

SPREAD  (I,  x)  = 
if empty  (I) 
then frame -> INJECTOR 
else   ri   i:I @ outside.i   !  x -> SPREAD  (diff(I,   {i}),  x) 

FRAMESYNCH = 
(INJECTOR  Cl   {|   outside,  frame   |}   |]  UntimedSystem)   \ 
{|   outside,  frame   1} 

We introduce the possibility of a fault on channel outside. 0 The same symmetry ar- 
guments previously made apply here. 

XFRAMESYNCH = 
((INJECTOR \ {| outside.0 1} III CHAOS ({I outside.0 |})) 

[| {| outside, frame 1} |] 
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UntimedSystem) \ {I outside, frame 1} 

CYCLICINPUT = 
(INJECTOR [| {| outside 1} |] SystemWithoutTiming) \ 

{| outside, frame |} 

XCYCLICINPUT = 
((INJECTOR \ {| outside.0 1} III CHAOS ({I outside.0 |})) 

[| {| outside 1} |] 
SystemWithoutTiming) \ {| outside, frame |} 

pragma channel forward : FOUR . DATAVAL 

A 1-place buffer is introduced along each of the four outside.i channels, fed by the 
INJECTOR 

B0UNDEDDELAY1 = 
((INJECTOR[[outside<-forward] ] 
[|  {|  forward  |}   I] 
(      BBUFFc(l.forward.0,outside.O) 
Ml  BBUFFc(l,forward. 1,outside.i) 
Ml  BBUFFc (1, forward. 2, out side. 2) 
Ml  BBUFFcd,forward.3,outside.3)) 

)  \ {|   forward,  frame   1} 
[|  {|  outside   |}  |] 
SystemWithoutTiming)  \ {|  outside   |} 

The possibility of a fault is allowed on channel outside. 0 

XB0UNDEDDELAY1 « 
(((INJECTOR \ {| outside.0 1} III CHAOS ({I outside.0 I})) 

[| {| forward 1} I] 
(  BBUFFc(l,forward.1,outside.i) 
Ml BBUFFcd, forward. 2, out side. 2) 
Ml BBUFFcd,forward.3,outside.3)) 

) \ {| forward, frame |} 
[| {| outside |} |] 
SystemWithoutTiming) \ {| outside 1} 

pragma channel tock 
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REGULATOR runs in parallel with the distribution of values to the outside channels 
to guarantee that all transmissions of values on the the outside.i channels (i is an 
element of parameter I) occur within N tocks, and that following the completion of 
one frame of events on the outside channels, M tocks elapse before the outside events 
for the next frame commence 

REGULATOR  (I,  M,  N)  = 
tock -> REGULATOR  (I,  M,  N)   [] 
outside ? i:I ? x -> REGULATOR'   (I,  M,  N,  diff   (I,   {i}),  0) 

J is the subset of I whose outside channels have had no event this frame yet, while n 
is the number of tocks elapsed since beginning of this frame 's outside events 

REGULATOR' (I, M, N, J, n) = 

(if n < N 
then tock -> REGULATOR' (I, M, N, J, n+1) 

else STOP) 

[] 
(outside ? i:I ? x -> REGULATOR' (I, M, N, diff (J, {i}), n)) 

[] 
(if empty (J) 
then DELAY  (M);  REGULATOR (I,  M,  N) 
else outside ? i:I ? x -> REGULATOR'(I,M,N,diff(J,{i>),n)) 

DELAY ensures that n tocks elapse between last outside event of one frame and first 
outside event of the next frame 

DELAY  (n)  = if 0 < n then tock -> DELAY  (n-1)  else SKIP 

Adding the REGULATOR to the rest of the already-developed system gives: 

REGULATED1 = 
(((INJECTOR[[outside<-forward]3 

[| -d forward 1} |] 
(  BBUFFc(l,forward.0,outside.0) 
IN BBUFFcd,forward. 1,outside.i) 
Ml BBUFFcd,forward.2,outside.2) 
Ml BBUFFcd,forward.3,outside.3)) 
) \ {| forward, frame 1} 

[| {| outside |} |] 

REGULATOR (FOUR, 2, 2)) \ {tock} 
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[|  {|  outside   1}   |] 
SystemWithoutTiming)   \ {I   outside   1} 

and if we allow channel outside.O to be faulty: 

XB0UNDEDDELAY1 = 
(((INJECTOR \ {I   outside.O   1}   I I I   CHAOS  ({I   outside.O   I») 
[|  {|  forward  1}  |] 
(      BBUFFcd, forward. 1, outside. 1) 
III   BBUFFcd,forward.2.outside.2) 
I | I  BBUFFcd,forward.3,outside.3)) 

)  \ {|  forward,  frame   |} 
[|  {|  outside   1}  |] 
SystemWithoutTiming)   \ {|   outside   1} 

Suppose we want to add the restriction that an event occurs on each of the four outside 
channels every k tocks, where k can vary from frame to frame, but must always be 
within some bounds of N tocks. Say, for some other integers A and B, that k can 
never be less than N - A nor more than N + B . Process PWB guarantees that rate 
of events on channel c: 

PWB  (c,   N,   B,  A)  = PWB'   (c,  N,   B,  A,   0) 

PWB'   (c,  N,  B,  A,  n)  = 

if n < N - B 
then tock -> PWB' (c, N, B, A, n+1) 
else if n < N + A 
then    (tock -> PWB' (c, N, B, A, n+D) 

\~\   (c ? x -> PWB' (c, N, B, A, n-N)) 

else c ? x -> PWB' (c, N, B, A, n-N) 

PWBs = (((PWB (outside.O, 5, 2, 2) 
Cl {tock}   |]  PWB (outside.1, 5, 2, 2)) 
Cl {tock}   I]  PWB (outside.2, 5, 2, 2)) 
Cl {tock}   |]  PWB (outside.3, 5, 2, 2)) 

Adding the restrictions on the buffers to the system yields: 

PWB1 =    ((INJECTOR[[outside<-forward]] 
Cl  {|  forward  1}   |] 
(      BBUFFc  (l.forward.O,outside.O) 
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IM BBUFFc (1,forward.1,outside. 1) 
Ml BBUFFc (1,forward.2,outside.2) 
Ml BBUFFc (1,forward.3,outside.3)) 

) \ {| forward, frame |} 
[| {| outside |} |] 

(PWBs \ {tock} 
[| {| outside |} |] 
SystemWithoutTiming)) \ {I outside 1} 

RUN(X) = [] a:X 0 a -> RUN(X) 

But we must also model the possibility that our faulty channel (channel outside. 0) 
does not produce its values in a timely fashion: 

XPWBs = ((PWB  (outside.1,  5,  2,  2) 
[|  {tock}   |]  PWB (outside.2,  5,  2,  2)) 
[|   {tock}   |]  PWB  (outside.3,  5,  2,  2)) 

The system becomes: 

XPWB1 =  ((INJECT0R[[outside<-forward]3 
[|  {|  forward  |}  |] 
(      RUN  ({Iforward.Ol})   III   CHAOS  ({I outside.01}) 
Ml  BBUFFc  (1, forward.!., outside. 1) 
Ml  BBUFFc  (1,forward.2,outside.2) 
Ml  BBUFFc  (1,forward.3,outside.3)) 

)  \ {|  forward,  frame   1} 
[|  {|  outside   1}  I] 
(XPWBs \ {tock} 
[|  {|  outside   |}  |] 
SystemWithoutTiming))  \ {|  outside   |} 

Generic 1-place buffers 

An N-place buffer receiving input on channel source and producing output on channel 
sink: 

BBUFF  (N)  = BBUFFc  (N,  source,   sink) 

BBUFFc is an N-place buffer also taking the names of its input and output channels 
as parameters: 
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BBUFFc   (N,   in,   out)  = BBUFF'   (N,   0,   <>,   in,   out) 

There are two more components to the state of BBUFF': it's current contents (the 
list of values s) and the number of items currently stored in the buffer: 

BBUFF'   (N,  n,   s,   in,  out)  = 
if n == 0 
then in ? x -> BBUFF' (N, 1, <x>, in, out) 

else if n == N 
then out ! head (s) -> BBUFF' (N, n-1, tail (s), in, out) 

else 
((out ! head (s) -> BBUFF' (N, n-1, tail (s), in, out)) 

[] ( in ? x -> BBUFF' (N, n+1, s~<x>, in, out) 
|~| out ! head (s) -> BBUFF'(N,n-1,tail(s),in,out))) 

7    Recovery from transient errors 

In order to arrange that a process can recover from a transient error even if values 
are not always agreed before use, we must arrange that: 

• An FCR which has suffered a transient fault can detect the resulting error and 
thus take appropriate recovery action. 

• While such a node is recovering the erroneous values, it does not promote failure 
in the other FCRs in the system. 

• During recovery, all significant state values will be recovered from correctly func- 
tioning peer nodes, and sufficient computation will be performed to maintain 
and re-generate state which is not directly communicated. 

The first two requirements are relatively undemanding; the first is effectively a con- 
straint on the types of errors that we can expect to tolerate. One implication which 
must be considered, however, is that the design will have to distinguish between a 
"local" value and a value received from a peer when performing comparisons3. If 
the "local" value disagrees with the majority, then a node should be considered to 
have suffered a fault and should attempt to recover the relevant values. The second 
requirement is also trivial for some classes of faults. If no further errors occur in the 

3Note that the models in Section 3 did not need to make this distinction. 
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portion of the system state related to that which we are attempting to recover (using 
the dependency relationship discussed in Section 5.2), we are guaranteed that three 
correct values will always be available to non-faulty nodes, and thus any erroneous 
output from a processor in the process of recovering will be ignored. We can gain 
some advantage, however, from allowing a processor which has detected a transient 
fault to notify its peers of this fact: the three remaining FCRs may then be able to 
survive a second non-independent error by moving to a 2-out-of-3 voting scheme. 

The last requirement in the above list is the most difficult to satisfy. If, for reasons 
of timing drift or because of a permuted schedule, a processor suffering a transient 
fault was the earliest node to compute the relevant values in each frame, we may 
never be able to guarantee that it can obtain a timely, reliable value from its peers. 
We can suggest several approaches to this problem, including 

• Arranging that the entire system reverts to a fall-back schedule which does 
guarantee to agree all state values by voting. 

• Finding (where possible) a "reversionary" schedule for the failed processor alone. 

• Arranging that the recovering processor and one of the fault-free peers change 
to pair of reversionary schedules which transfer corrected data to the recovering 
node while maintaining just sufficient of the normal behavior to ensure correct 
system operation. 

These possibilities are discussed below: 

7.0.1    A fully-voted reversionary schedule 

We might propose the following scheme of operation: whenever it is determined that 
a processor has computed an invalid result for some task, that processor will be asked 
to sit idle until the end of the current frame, at which time all processors will stop 
running their particular permuted schedules and start running a single already-agreed- 
upon schedule. Thus, during the next frame, all processors will be running the same 
schedule. We know because of our requirement from Section 5.1.2 that only permitted 
permutations were used, that the output records for all non-invalidated replicated 
instances of all tasks contain the same data, and that if the invalid processor has not 
failed, it can recover valid values for all tasks (values derived from voted values of 
all tasks in the basis set) by the end of the next frame. If no notifications of invalid 
results are received by any processors during the execution of the recovery frame, the 
processors switch to their particular permuted schedules at the end of that recovery 
frame. 

This scheme does, however, limit many of the advantages which motivate our use 
a relaxed voting scheme. If we must be able to operate on a fully-voted schedule, we 
cannot take advantage of the performance benefits which overlapping communication 
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and computation will bring. In particular, there will be many sets of permuted 
schedules for which no suitable fixed schedule with complete voting will exist. Further, 
at least for the duration of the recovery, we will have lost the benefits of permuted 
scheduling. 

7.0.2    A single reversionary schedule 

This alternative again suffers from the disadvantage that for many applications there 
will be no single order of task execution which requires data only after it has been 
made available by one of the peer nodes. If only the recovering processor reverts to 
this schedule, however, we can remove some of the constraints limiting our execution 
order. In particular, the reversionary schedule need not calculate any outputs or other 
values which are calculated afresh in each cycle; it need only perform that minimum 
computation which is necessary to maintain the relevant node state. In terms of the 
data dependency graph, we need only execute those tasks which occur on the cycles 
through the initial erroneous task. Branches which do not form part of a cycle may 
be neglected, and indeed as we saw above, there are concrete advantages to be gained 
from a processor informing its peers that it should be ignored in any votes which take 
place during its recovery. 

Due to the difficulty of finding a suitable schedule (if one exists), this technique will 
obviously be limited in its application, particularly as to exploit the potential benefits 
of permuted scheduling, we must find a number of recovery schedules, each capable 
of re-generating a particular set of corrupt values while maintaining the outputs and 
correct behavior of the uncorrupted elements of the application. 

7.0.3    Partial reversionary schedules 

In an attempt to avoid some of the difficulties associated with both of the above 
schemes, we propose considering a method which combines some features from each. 
Finding a single processor schedule which is compatible with the permuted schedules 
already running on fault-free processors, as required by the previous scheme is clearly 
more difficult than the problem of finding two schedules which suffice to transfer 
some part of the system schedule to the recovering processor. This latter problem 
is simplified further if we allow the fault-free partner in such a recovery to neglect 
some of its output calculations (on the basis that there will still be duplicate correct 
values generated by the remaining pair) - we clearly lose tolerance to further faults 
during this operation, but the practical value of such resilience to two faults will 
obviously depend on the reliability analysis of a particular application. We do require 
a mechanism for identifying which processor should assist in the recovery when a fault 
is detected, but even here we may have a degree of choice over which of the remaining 
permuted schedules is most suitable for correcting the specific error identified. 
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The greatest cost of this approach is the effort of identifying sufficiently many 
reversionary schedules to maintain the benefits of temporal redundancy. We should 
note, however, that this is a task which is determined entirely by the static schedules 
chosen, and thus need not be carried out in a time-critical environment. The run-time 
penalty should be little more than identifying which regions of the data-dependency 
graph have been invalidated and looking up the appropriate recovery schedules in a 
pre-computed table. 

To ease this task, it is perhaps desirable to consider the data-dependency graph 
as being divided into software containment regions which are treated as either being 
believed correct or believed corrupted as a whole. These regions must obviously 
contain the transitive closure of the relevant voted state variables, as discussed in 
Section 5.2. We also note that the fault-free processors initiating a recovery must 
agree on the identity of the FCR to be recovered and on the particular peer who will 
enter the assisting reversionary schedule. This information is, however, amenable to 
voting in a similar manner to other values, and is only required when votes are taken 
on state data - it need not apply to the agreement of output values, for example. 

8    Conclusions 

We do not expect this document to be viewed as a complete analysis of the FTP 
design, but to be seen as a working paper describing the state of various threads 
of analysis and modeling. One of the primary purposes of this paper is indeed, to 
present some ideas for comment from Draper representatives who, we hope, will be 
able to view them in the context of their greater familiarity with the concerns of the 
application domain. Significant features of recent developments include: 

• Clarification of arguments based on symmetry which can be used to establish 
properties of the full FTP system from properties of a single voter. This work 
is sufficiently established that we feel a formal mathematical proof of the ap- 
proach could be given. It is a result which will be particularly important in the 
future development of models which include more detail about the operating 
mechanisms of their components. It has already assisted in the rest of this work. 

• Moving toward a less abstract model bearing a closer resemblance to the im- 
plementation, we have gained significant understanding of the problems faced 
in several key areas. These include 

o tolerance of transient faults, 

o recovery after transient errors, and 

o the benefits to be gained from temporal redundancy and permuted schedul- 
ing. 
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o We have presented models of the FTP consistency algorithm which include 
explicit timing information in both synchronous and semi-asynchronous 
models. These models include sufficient information about the communi- 
cation mechanism to investigate the need for non-blocking and sacrificial 
buffers. We feel that these models approach the "Synchronous replicated" 
and "Asynchronous distributed" views of [1], although they still involve 
significant abstraction from the way in which the processing and voting 
elements operate, and the issue of establishing co-ordinated global timing 
has still to be addressed in detail. 

The modeling which we have completed in this area is still highly abstract, but 
it provides important framework elements, and highlights those areas which 
place additional emphasis on new theories and tools. 

The major prospects for future work on the demonstrator application lie in the fol- 
lowing areas 

• Our models are still very abstract in some areas: our models of communica- 
tion are relatively close to transputer style implementations, but areas such 
as timing, clock synchronization and the mechanisms connecting hardware and 
software could benefit from more detail. Additional information may well allow 
us to relax some of our design constraints: for example our asynchronous timing 
model requires large margins in the specification of time-outs and cycle lengths, 
whereas slight improvements to the design we are formalizing may allow these 
margins to be reduced. 

• At the implementation level, more detailed models of the interaction between 
software tasks is required, both in terms of specifying application timing con- 
straints and especially in the relationship between communications hardware 
and software. 

• The interface between communication, voting, and application software sched- 
ules is perhaps in greatest need of further formalization. Both this area and 
more general timing and scheduling issues will require the ability to model and 
distinguish systems using multi-processing on a single CPU and communications 
hardware supporting a single processor, as well as the theoretically simpler case 
of true multi-processor systems. 

These prospects highlight some points of importance in the tool-development part 
of the project, in particular in the area of prioritization (as noted in Section 5.1.1) 
and possibly in assisting the modeling the interaction between varied hardware and 
software environments. 
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A    Vector-based Model for Permuted Scheduling 

abstract csp: An FDR-1 model of a voter for permuted schedules 

(c) Formal Systems Design & Development, Inc, 1994 

Originated by: Michael Goldsmith This version: 
— $Id:   abstract.csp,v 2.0 1994/12/16  17:44:03 dave Del $ 

Define two vector operators in Standard ML: getnth returns the selected component of 
a sequence, setnth sets the selected component of the sequence to be the value specified. 

Declare the function names as non-CSP definitions 
pragma opaque  "ML" getnth 
pragma opaque  "ML"  setnth 

code for the function implementations 
local 

fun MLgetnth  (0,  a::x)  = a 
I  MLgetnth  (n,  _::x)  = MLgetnth  (n-1,  x) 
I  MLgetnth _ = raise SemanticError 

("getnth:   index too large") 
in 
fun CSPgetnth [n, s] = 

let val MLs = CheckSeq s 
val MLn = NumberOf (CheckAtom n) 

in MLgetnth (MLn, MLs) 

end 
I CSPgetnth x = raise TypeError 

("getnth: expected <number,sequence>," 

" " found " 
~ print_expression (EXPseqcomp (x, []))) 

end; 

Include the ML source 
pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 
pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 

pragma inline "ML" 
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The following definition includes a call to print merely as development aid. 
pragma inline  "ML"  local 
pragma inline  "ML"      fun revonto  (a::x,  y)  = revonto  (x,  a::y) 

|  revonto  (_,  y) = 
(print  "\nSTATE "; 

map(print o print_expression)y; 
print "\n";  y) 

fun MLsetnth  (0,  _::x,  v,  y)  = revonto  (y,  v: 
|  MLsetnth  (n,  a::x,  v,  y)  = 

MLsetnth (n-1,  x,  v,  a::y) 
|  MLsetnth _ = raise SemanticError 

("setnth: index too large") 

pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 

pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 

pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline "ML" 
pragma inline 
pragma inline 
pragma inline 
pragma inline 
pragma inline 
pragma inline 

:x) 

in 

'ML" 
'ML" 
'ML" 
'ML" 
'ML" 
'ML" 

fun CSPsetnth [n, s, v] = 
let val MLs = CheckSeq s 

val MLn = NumberOf (CheckAtom n) 

val _ = NumberOf (CheckAtom v) 
in EXPseqcomp (MLsetnth (MLn, MLs, v, []), []) 

end 
I CSPsetnth x = raise TypeError 

("setnth: expected number,sequence,number>," 

* " found " 
~ print_expression (EXPseqcomp (x, []))); 

end; 

Declare the relationship between the CSP names and the ML functions 

pragma inline  "ML" DefineMLFunction  "getnth"  CSPgetnth; 
pragma inline  "ML" DefineMLFunction  "setnth"  CSPsetnth; 

The following sets and channels are equivalent to those in timing, csp 

TASKS = { 0,   1,   2,   3,  4 } 
BOOL = { true, false } 
pragma channel task  :  TASKS   .  BOOL 
pragma channel pass  :  TASKS 
pragma channel work,  sync 

The communication model is now a single process with a vector argument 
COMMS = JUDGE  (<2,2,2,2,2>) 
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Initially this process accepts a termination signal, and if it is valid, moves to the DSZ 
state to decrement the appropriate value. If the execution was invalid, it performs the 
associated work (actually an abstraction of the decision process), and remains ready 
to accept another termination. Note that inputs are not accepted while work is being 
offered: this captures the prioritization of the "internal" action work over external 
communication 

JUDGE  (s)  = 
task ? i ? b -> 

if b 
then DSZ (s,  i, getnth (i,  s)) 
else work -> JUDGE  (s) 

This process examines the count relating to task i and performs appropraite action. If 
the recent termination we the first successful one, the counter is decremented (without 
doing any work for the comparison), and the JUDGE returns to its initial state. If 
one previous successful execution had preceded this one, a comparison is performed, 
and the successful acquisition of good data is signalled on pass. Further successful ex- 
ecutions are ignored (after the comparison, which is necessary to detect the occurence 
of a transient error, although not to determine the actual value required). 

DSZ  (s,   i,   si)  = 
if si == 2 
then JUDGE (setnth (i, s, 1)) 

else if si == 1 
then work -> pass   !   i -> FRAME  (setnth  (i,   s,  0)) 
else work -> JUDGE  (s) 

When a pass signal has been indicated, we examine the new values of all the counters 
in s to see if they are now all zero. (This uses the FDR set operator.) If this is the case, 
further tasks are ignored after a comparison, and the end-of-frame synchronization 
may occur. Otherwise the sub-system returns to its initial state. 

FRAME (s) = 
if set (s) == { 0 } 
then (sync -> COMMS) [] task ? any -> work -> FRAME (s) 

else JUDGE (s) 

This is Release 3.0 of this document, last modified by Michael Goldsmith at 20:35:05 GMT on April 
25, 1995. 
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Verifying Timing Properties of Static 
Schedulers 

David Jackson 
Formal Systems 

April 25, 1995 

Summary 

This document describes the process of modelling a general class of real-time 
programs with cyclic, non-preemptive schedulers. We show that a large number 
of the requirements placed on these systems in real embedded-system applica- 
tions can be captured as instances of a few general formal specifications. We 
also describe models of these programs in CSP which have the property that 
relatively few parameters need to be altered to reflect a change in schedule, 
most of the model being determined by the software architecture adopted. 

Such models and requirements are ideally suited to mechanical verification, 
which can be carried out relatively inexpensively. We suggest a modification 
to the style of earlier deadline specifications in CSP which allows the "degree" 
of failure to be judged when a violation of the specification is identified in 
this way. In an extension to other work on this topic, we describe how the 
mechanical verification process can yield quantitative information about timing 
margins and processor utilization in addition to the qualitative verification of 
satisfaction. 

We give an example based on a simplified, but realistic, automotive engine 
management system. 

1    Background 

A common feature of a number of embedded systems of which Formal Systems has 
experience is a scheduling scheme based on a statically determined cycle of task exe- 
cutions. These schedulers, and a number of more flexible schemes based on relatively 

This is a working paper (Wl.4.1) in the Office of Naval Research SBIR Project N00014-93-C-0213 
Embedded Transputer-based System Design. 



slow or constrained dynamic variation of a task cycle, are particularly amenable to 
formal and mechanical analysis. This document describes the specification of such 
systems in CSP, and their verification using the FDR tool. 

As discussed in a number of documents relating to the Transputer Fault-Tolerant 
Processor ([1]), the time-critical tasks of an embedded system are commonly orga- 
nized into a series of frames (of fixed duration), each of which is executed in a longer 
cycle. For example, if a control system requires that certain outputs are updated 
every 2ms, while other status information need only be computed every 10ms, we 
might structure the execution schedule as follows: The critical performance criteria 

Minor cycle 

2ms 2ms 2ms 2ms 2ms 

10ms 

Major cycle 

of embedded systems are principally defined by the points are which external inputs 
are monitored and external outputs are provided; the importance of such externally 
observed behavior makes such systems obvious candidates for methods (such as the 
CSP formalism) which treat the relationships between external events as paramount. 
This document will examine the type of constraint which might appear in the require- 
ments specification of such a system, the structures which a real-time program might 
use to address them, and the verification of these properties using the FDR tool. 

2    A Motivating Example 

As an example of the type of system which we plan to analyze, consider an automotive 
Engine Management System (EMS). We will assume that this micro-processor system 
is responsible for monitoring a range of inputs from the engine, vehicle, and driver, 
including 

• Crankshaft position (° from TDC) 

• Crankshaft speed (averaged over some interval) 

• Desired engine speed (from driver or transmission control) 

• Fuel injector pressure (to check correct function) 
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• Engine cooling system temperature 

and perhaps also 

• Engine oil temperature 

• Exhaust composition (Og %) 

• etc. 

It will produce outputs including 

• Injector actuation signals 

• Ignition timing signals (advance/retard) 

• Fuel pump control signal 

• Cooling fan start/stop signal 

• Tachometer reading (for driver) 

• Warning indications 

We expect that some signals (Injector control) must be generated at a relatively high 
frequency (1 KHz) and that the majority of the others are required less frequently. 
Note that we are more concerned with providing examples of the features of a range 
of systems than with providing a realistic model of a particular application. 

3     Requirements 

Requirements are placed on an embedded system by the external engineering dis- 
ciplines governing the application. A system will typically be required to provide 
outputs at a specified minimum frequency (possibly subject to constraints on the 
maximum rate of update, and on the regularity of the outputs). These outputs will 
be required to reflect a sufficiently 'fresh' set of input values. The majority of likely 
classes of detailed timing requirements arise from these considerations. 

3.1    Safety Properties 
The majority of properties which do not relate directly to timing are "safety proper- 
ties" . These define behaviors of the system which the controller should never allow. 
An example might be that 

The EMS should never allow the engine to start while the demanded speed 
is zero (i.e. the ignition is turned off). 
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Note that this class of excluded behavior might be sufficient to prevent the system 
entering a possibly hazardous condition, but that taking action to rectify a potential 
danger is usually a timing (or liveness) condition rather than a safety property: 

When demanded speed becomes zero, the EMS should bring the engine 
to a halt in no more than Is. 

3.2    Iteration Rates 

The simplest timing requirements are those which state that particular functions 
(such as providing an output, or updating a state variable) are executed regularly. 
Such requirements can express a variety of forms of constraint: 

• Repetition at a precise period 

• 

• 

Repeated execution within a specified interval of a series of precise intervals. 
(Placing bounds on the maximum total deviation from an ideal scheduler.) 

Repetition such that the time interval between executions lies within specified 
bounds. (Placing a constraint on the rate of deviation from the ideal, but not 
the actual maxmimum displacement.) 

Long-term bounds on average execution rates, placing limits on the number of 
executions which must occur over some specified time, but not on the actual 
times of occurrence. 

This classification has previously been observed in [7]. 
Requirements of this form provide one of the most important inputs to the design 

of a scheduler, and verifying these properties constitutes an important "sanity check" 
on a proposed design. 

3.3    Sequence Timing 

A more sophisticated and more stringent requirement is necessary to capture overall 
response time conditions which are inevitable in embedded systems design. These 
typically take the form of constraints placed on particular sequences of task executions 
calls to ensure that the response to a particular input change is made in a timely 
fashion. 

A typical requirement of this form will include a "trigger" task, which is responsi- 
ble for detecting some input condition, a list of subsequent tasks each of which derives 
a value from values provided by previous tasks, and a final task which generates the 
output. An associated time bound will define the maximum allowable delay between 
input and output, and is thus a maximum bound on the time from the start of the 
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execution of the first procedure to the completion of the last specified. Any number 
of other operations could theoretically intervene, and several such conditions, or even 
several instances of the same condition, can be active at once. 

We can model such specifications by considering just the execution of the specified 
tasks and the passage of time. Suppose we construct a specification process (perhaps 
modelling an observer watching the system) as follows. The specification process will 
allow watch for the execution of the first (triggering) task in the sequence, and start 
a counter when this is observed. It will then wait for each of the required subsequent 
tasks to be executed (ignoring any irrelevant executions). If the specified execution 
sequence is completed before the counter reaches the limit, the specification simply 
returns to its inactive state. If the counter reaches the limit before all the desired 
executions have completed, the observer should indicicate that the process violates 
the specification. In the CSP theory, we can actually use such an "observer" as a 
formal model of the behavior which the system should be permitted to perform. If 
all the system's behaviors are permitted by the observer, the requirement is satisfied; 
if not, the system is unacceptable. 

We will write the property which enforces this limit as 

WITHIN (trigger, limit, actions) 

where trigger is the name of the first procedure in the thread, limit is the time limit 
permitted for the thread and actions is a sequence of tasks which must be executed, 
in order, within the given interval. For example, to specify that every change in 
demanded engine speed is reflected in the calculation of ignition timing within 10ms 
we might have the condition 

WITHIN (ReadDemand, 10, (ValidateDemand, Ignition Advance, Drivelgnition)) 

In this case we are insisting that every call to ReadDemand is followed within an inter- 
val of 10ms by the procedures ValidateDemand, Ignition Advance, and Drivelgnition, 
in that order. 

The description of the specification above captures the required behavior after 
a single triggering task. Provided that the initial task does not also form part of 
the subsequent action, we can allow for overlapping conditions simply by combining 
several copies of the basic specification process in parallel. 

3.4     Conditional Requirements 

Many practical systems will be sufficiently complex to need requirements which are 
enforced only under certain conditions. For example, a controller would probably not 
need to respond rapidly to inputs if it were in a start-up or self-test mode in which 
the plant being controlled were guaranteed to be inactive. 
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This type of requirement can be validated in a number of ways. A simple approach 
is to explore the behavior of the system in an environment such that only modes in 
which specific conditions must hold are entered; this may greatly simplify the analysis 
(whether this is performed by hand or mechanically), and give a significant confidence 
in the correctness of the schedule. Obviously, however, such partial analysis cannot, 
in general, be applied to give a formal guarantee of complete correctness. 

To establish a formal property, the requirements must relaxed explicitly. Typically 
the result will be conditional statement such as 

If the engine is currently running (i.e. speed > lOOrpm), the EMS should 
respond to an increase in demanded speed within 10ms. 

We should note that significant difficulties have been observed in some cases in defin- 
ing exactly when informally specified conditions like the one above actually apply: if 
the engine speed drops below lOOrpm 2ms after a demanded increase in speed, is the 
time limit to apply or not? 

3.5    Quantitative Results 

The final type of requirements which we might consider as having a direct impact on 
scheduler correctness are those which place quantitative bounds on the satisfaction of 
particular deadlines, or on the overall utilization of the system by time-critical tasks. 

It is common practice, for example, to insist that a specified proportion of pro- 
cessor time remains free for non-time critical tasks and for possible expansion. (The 
proportion being higher for early releases of a system than for revised software issues.) 
Similar considerations, coupled with the possibility of variations in clock frequency 
and unpredictability in interrupt and 10 latency, make it desirable to establish similar 
margins on other timing constraints. 

These conditions are not necessarily to be strictly enforced, however, and thus 
it can be useful to weaken the original requirement and then measure the relevant 
timing parameters, such as the minimum delay between a set of real-time tasks com- 
pleting and the next task being scheduled (for processor slack time) or the interval 
between the completion of a sequence of desired actions and the latest time at which 
a particular requirement would have allowed this completion. We can achieve this by 
associating quantitative information with the specification which enforces the condi- 
tion, as discussed in Section 5.6 below. 

4    Structure of Embedded Programs 

Programs for embedded systems of the type we are considering are commonly imple- 
mented in a distributed style: the software is structured as a series of distinct tasks, 
whose execution is triggered by the scheduler. 
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Inter-task communication is usually implemented by the use of shared variables. 
As only a single task is executing at any instant, access control is typically not required 
for these variables1. Input and output activities are implemented as tasks which are 
scheduled in the same way as computation, although it is common practice to arrange 
that these tasks are executed in close synchronization with a system clock interrupt 
(by placing them early in each cycle, for example). Failure to make this restriction 
can result in significant difficulty in ensuring reliable communication, and can produce 
unacceptable "jitter" in the timing of inputs and outputs. 

The scheduler is responsible for executing each task in the system in an appropriate 
sequence and at specified times. It is common for the sequencing contraints to be 
represented by a static list of tasks to be executed. A variety of execution rates can 
be permitted by marking "slower" tasks as being executed only in some cycles of the 
fastest rate clock, but this scheme does not extend to situations where a low-frequency 
task may be longer than the available execution time in a high-frequency cycle - in 
this case, the high-frequency tasks must be able to preempt the low frequency one, 
and a more sophisticated schedule must be used. 

Because of the difficulties involved in preemptive scheduling, it is normally avoided 
in embedded systems: long low-frequency tasks can be broken in to smaller sub-tasks 
if required. In this case, a single sequence of tasks may be sufficient to represent the 
desired operators. The scheduler maintains a counter of the current position of the 
(highest-frequency) cycle in the (lowest-frequency) series. Tasks are marked with the 
values of this count for which they are actually active. For example a system with 
three tasks scheduled harmonically every at frequencies of 1, 2, and 4 Hz might be 
represented by the following table: 

Task Cycles 
A 
B 
C 

0,1,2,3 
0,   2, 
0 

This scheme is simple and easy to implement, but does have a minor potential 
disadvantage: the order of execution of tasks within a cycle is fixed. For many 
applications such an assumption is reasonable, as we might expect higher-frequency 
tasks to require a more stable timing pattern and a lower latency (between the cycle 
starting and the task executing). If, for some reason, this is not appropriate, we might 
cast the schedule as a sequence of execution sequences (in the manner of [7]). For the 
example above we may need to permute tasks A and B, resulting in the following: 

xThe scheduling of inter-processor communication is, of course, the primary issue discussed else- 
where in this project [6] 
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Cycle Tasks 
0 
1 
2 
3 

A, B, C 
A 
B, A 
A 

The final complexity to be addressed is the use of application data to change the 
schedule decisions which are made. Typically, the effect of the application on the 
scheduler will be restricted, perhaps to the selection of a scheduling mode or some 
other variable with a restricted domain. If the dependency of a task on such state 
data is orthogonal to its timing, we can simply express this dependency separately: 

Task Mode 
Stationary Accelerate Decelerate 

A / / / 

B / / 

C / 

If the relationship between timing and system operating state is not orthogonal, 
we might either (a) provide separate scheduler data for each processor state, or (b) 
provide different task identities which actually perform the same functional task, but 
in different circumstances. For example, if task B were required to execute in cycles 
0 and 2 when accelerating, but 1 and 3 when decelerating we might introduce a 
"placeholder" B' which actually performs the same task as B: 

Task Cycles Mode 
Stationary Accelerate Decelerate 

A 0,1,2,3 / / / 

B 0,   2, / 

B' 1,   3, / 

C 0 / 

The assumption that B' and B are actually equivalent can be formally represented in 
a model of the system by renaming any event relating to the execution of B' into the 
corresponding action of B. 

5    Formal Specifications 

This section is intended to give formal CSP characterizations of the proerties discussed 
earlier. Our specifications will be based on the usual notion of trace refinement: 
we give, as a formal description of the property we require, a CSP program which 
allows all the sequences of events we wish to consider as valid. A scheduling system 
will satisfy our requirements if all the possible behaviors of the system model are 
permitted by the relevant specification process. 
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5.1 Observable events 

Our correctness criteria concern the passage of time and the execution of software 
tasks. We will therefore assume that the following events may be used in representing 
the behavior of our system: 

X indicates the passage of one unit of time. Our time measurement is discrete, but 
to investigate the effects of this approximation we can vary the actual units 
used. To allow a range to be calculated simply and using the integer arithmetic 
provided by the FDR tool, figures in the model may be written as multiples of 
some smaller interval; this will allow us to change the accuracy of our model 
simply be changing a parameter in the scaling function. 

exec.i represents the start of execution of a task i. We do not need to model the 
completion of a task explicitly if it can be inferred to sufficient accuracy for our 
needs from the start of the next task. 

i indicates the start of cycle of scheduler execution, i events are assumed to occur at 
intervals corresponding to the fastest execution period required by a program. 
In implementation terms, i might represent a timer interrupt. 

5.2 Safety Properties 
These form the largest "traditional" class of trace specifications. Note that in order to 
capture the relationship between scheduling decisions and external events, the actions 
we observe must be augmented by the events in question. For example, our earlier 
requirement 

The EMS should never allow the engine to start while the demanded speed 
is zero (i.e. the ignition is turned off). 

can be expressed by the following process (assuming that demanded speed is available 
frequently on channel demand): 

— Assuming the initial state  is potentially unsafe, 
Safetylnitial = SafetyUnsafe 

— This process monitors the condition when the demanded 
— speed is non-zero.   It .prohibits, exec.start. 
SafetyUnsafe = demand ? x -> 

if x==0 then SafetySafe else SafetyUnsafe 

— This process monitors the condition when the demanded 
— speed is zero.  It _allows_ exec.start. 
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SafetySafe = 
demand ? x -> (if x==0 then SafetySafe 

else SafetyUnsafe) 
[]   exec.start -> SafetySafe 

We then require that our system refines Safety Initial. 

5.3    Iteration Rates 
The specification of periodic execution has also been the subject of significant work, 
including work on this project citefunspec. We include these "standard" definitions 
here for completeness. 

If an exact bound is placed on the time between executions, we have 

PERIODICCi,  T)  =   l~l  t   :  {0..T-1} 0 PERIOD(i,T,t) 

where i is a task and T is the time required between successive executions. The non- 
determinsitic choice serves to allow an arbitary starting point to be chosen within the 
cycle. Once this point is established, the process is deterministic: 

PERIOD(i,T,n) = if n==0 then 
exec . i  -> PERIOD(a,T,T) 
else tock -> PERIOD(a,T,n-l) 

This keeps a count, n of the time allowed until the next occurrence of execed.a. When 
the count is zero, it will only allow this execution action to occur; when n is non-zero, 
the process will allow time to pass (represented by the tock action) and decrement 
the count accordingly. 

In practice this PERIODIC condition is too strong and our specification will allow 
some variation in execution time. If the requirement places a bound on the allowed 
deviation or the actual execution and the desired one, we will call it a bounded drift 
requirement, and capture it with the following specification process. 

BLURRED(i)    =    l"l  n  :  {L_i  .. U_i} Q BLUR(i.n) 

BLUR(i,n)  = 
(if n < T_i + U_i then tock -> BLUR(i,n+l)  else STOP) 

[] 
(if T_i + L_i <= n then exec.t.i -> BLUR(i,n-T_i) 

else STOP) 

The only information that need actually be retained from the history of the process 
before the last occurrence of the event is the phase shift at which it occurred; this 
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"drift" (the parameter n) will always lie within the interval [Li, U{], and initially we 
allow it to take any such value. 

If the requirement places bounds on the interval between successive executions 
of a task, rather than on the absolute time of occurrence, we will refer to it as a 
bounded rate of drift condition. The process here is remarkably similar that above; 
the difference lies in that after the task has been scheduled, its drift is forgotten and 
the interval counter reinitialized to zero: 

REPEATING(i)  =   I"I  n  :  {0   ..  Tmax.i} 9 REPEAT(i,n) 

REPEAT(i,n)  = 
(if n < Tmax.i then tock -> REPEAT(i,n+l)  else STOP) 

[] 
(if Tmin.i <= n then exec.t.i -> REPEAT(i,0)  else STOP) 

Once again the initialization condition can be altered by restricting the range of the 
non-determinism. 

In the weakest form of iteration rate condition, a bound [Nmirii... NmaXi] is placed 
on the number of executions in some time interval TinU. We need to keep a record 
of the rate of execution of task i over the last TinU time units. This could be held 
as an integral part of the state of the specification process, as a sequence parameter 
for example, and the process could count the number of % executions in the sequence 
before deciding if an execution was permissible (or necessary). Alternatively, we might 
keep the history in a "delay-line" process, and store the sum as a separate state item. 
In the following definition, channels delin and delout are assumed to communicate 
with such a process. 

CNTRL(i,sum,curr)  = 
(if Nmin_i <= sum 

then tock -> delin ! curr -> 
delout ? v -> CNTRL(i,sum-v,0) 

else STOP) 
[] 
(if sum < Nmax_i 

then exec.t.i -> CNTRL(i,sum+l,curr+l)   else STOP) 

The initialization of this system is quite important: the initial value of sum should 
equal the sum of the slots in the initial value of the delay-line, and that value should, 
itself, be between Nmini and Nmaxi, otherwise CNTRL will attempt to bring the 
execution rate back into line initially (possibly stopping time in the process). 

To augment these general specifications, we can employ a valuable practical insight 
which has arisen in recent work: when checking a refinement automatically, it is usual 
to insist that the shortest trace leading to an error is returned if the the refinment 
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fails to hold. In the context of this type of timing requirement, this means that 
an error is reported when the execution of a task becomes overdue (i.e. when the 
time limit expires). It is perhaps more useful, however, to give some indication of 
the interval between a task becoming overdue and its actual execution time. (This 
is particularly the case with less-critical tasks, where some failure to meet deadlines 
may be permitted.) Specifications in the above style can provide this information if 
we change their action on the detection of an error. Most of the processes have a 
similar form to the following 

REPEAT(i,n)  = 
(if n < Tmax.i then tock -> REPEAT(i,n+l)  else STOP) 

[] 
(if Tmin.i <= n then exec.t.i -> REPEAT(i,0)  else STOP) 

If the time limit is exceeded, this process will not let \ events occur, and a delinquent 
implementation will typically fail to refine this (because it will allow x but not the 
scheduling exec, action). If we rewrote the specification including 

REPEAT(i,n)  = 
(if n < Tmax.i then tock -> REPEAT(i,n+l)  else IDLE) 

[] 
(if Tmin.i <= n then exec.t.i -> REPEAT(i.O)  else STOP) 

where 

IDLE = tock -> IDLE 

then the refinment would not fail until the implmentation was willing to perform 
the exec, action (which the specification would no longer permit). The number of x 
events which had elapsed since the deadline now provides a measure of the time delay 
in meeting the deadline. 

We should perhaps note that this simple form actually permits a refinement to 
hold if the implementation never schedules the task being considered. A stronger 
condition could employ a scheme like the following: 

REPEAT(i,n)  = 
(if n < Tmax.i then tock -> REPEAT(i,n+l) 

else IDLEF0R(2 * Tmax.i)) 

□ 
(if Tmin.i <= n then exec.t.i -> REPEAT(i.O)  else STOP) 

where 

IDLEFOR(n) = if 0 <= n then tock -> IDLEFOR(n-l) else STOP 
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This specification will prohibit any behavior with more than 2TmaXi x events after a 
deadline has been missed, as well as attempts to execute the task once the deadline has 
expired. Checking refinement of such a specification can have one of three outcomes: 

• Successful refinement, indicating that the deadline is always met, 

• A failure resulting from the implementation allowing an exec, event which the 
specification did not permit. This indicates that a deadline has been missed, 
and allows the amount by which it was missed to be determined from the trace 
leading to the error. 

• A failure resulting from the implementation allowing a clock tick (x) which the 
specification did not permit. This indicates that the implementation missed the 
deadline by more than the amount specified (2TmaX{ in the above example). 

5.4    Sequence Timing 

The description of timing requirements applicable to sequences of task executions 
given in Section 3.3 was already phrased in terms of the actions which might be seen 
by an observer. To encode these requirements in a form suitable for verification by 
refinement, we simply need to express such a non-determinsitic observer in CSP. 

We first define some processes used in constructing our specifications. Each spec- 
ification will consist of two parts, one which keeps track of the elapsed time and 
another to monitor the calls to specified procedures inorder. reset is the event used 
by the latter to inform the timer that the thread has been successfully executed. 
synch is a further synchronization introduced to ensure that the processes remain "in 
step". 

channel reset,  synch 

The events irrelevant and therest are used in the following definitions as short-hand 
for procedure calls which do not satisfy the thread. 

channel irrelevant,  therest 

Limit is the timer half of the specification - when proecdure trig is called, it enters 
the Bound state and states counting down the number of tock events allowed by the 
limit. 

Limit(trig,count)  = tock -> Limit(trig,count) 
[] 
execed.trig -> Bound(trig,count,count) 

therest -> Limit(trig,count) 
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Bound decrements the timer value whenever tock is observed, and simply ignores 
procedure calls. When a reset occurs, it makes a further synchronization on channel 
margin (this is used in later specifications to allow timing margins to be examined), 
and then resets to its initial state. If the time limit is exceeded, further tock events are 
not permitted. (This will be visible in practice as a failure of the refinement check.) 

Bound(trig,count,curr)  = 
(if 0 < curr then tock -> Bound(trig,count,curr-1) 

else STOP) 

[] 
reset ->  (synch -> Limit(trig,count) 

[]  margin  !  MarginQuantum *  (curr/MarginQuantum)  -> 
synch -> Limit(trig,count)) 

[]  therest -> Bound(trig,count,curr) 
[]   execed  !  trig -> Bound(trig,count,curr) 

The basic unit used to build the part of the specification which monitors procedure 
executions is Await(f,X). This will perform any event from the set X, and either 
terminate successfully if the event is /, or remain in the same state if not. 

Await(f,X) = 
([]   x  :  X    @ x -> if x == f then SKIP else Await(f,X)) 

The following definition shows how these elements may be combined. We define 
a process (WithinEg) which specifies that each of the tasks in actions must occur (in 
order) within Tlim of any execution of trigger. 

We instantiate a copy of the Limit process together with a sequence of Await 
processes which check for each required procedure in turn. This sequence terminates 
(and loops back to its initial state) only when all the procedures have been called in 
order. 

WithinEg = ( Limit(trigger,Tlim) 
[[ therest <- exec.head(actions)  ]] 

[|  union({|   exec.i   I   i<-{trigger,head(actions)}|}, 
{|  reset,synch  |})   |] 

while(rseq(y,<exec.trigger>~ 
<execed.i   I   i<-actions>~ 
<reset>, 

if y == reset then 
[]  x:{exec.i,irrelevant   I 

i<-union({trigger},set(actions))} Q 
x -> reset -> synch -> SKIP 

else 
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Await(y,  union({irrelevant}, 
{ execed.i   I   i<-union({trigger},set(actions))   })))) 

)  \ {reset,synch} 

The reset and synch events are not intended to be part of the specification, and thus 
are hidden from the environment. 

To use such a specification, we take a model of our system, and map task ex- 
ecutions which do not concern the particular requirement to the irrelevant value 
introduced above. We may then hide any other events which do not directly appear 
in our specification, such as the cycle event marking the beginning of a frame. 

TestEg = 
(System  [[ execed.i <- irrelevant 

I   i <- diff(TASKID, 
union({trigger},set(actions)))  ]]) 

\ {|  cycle   |} 

The condition we require is 

assert WithinEg  [T= TestEg 

We should note that the above specification process makes two assumptions: 

• No more than on instance of any sequence is "active" at any one time, and, 

• the triggering event of a sequence does not also occur in the list of triggered 
actions. 

The first of these is particularly restrictive, but is easily relaxed by expanding our 
specification. Rather than simply comparing the implementation to a single process 
like WithinEg, we may compose several specifications in such a way that they syn- 
chronize on timing signals and task execution other than the trigger, but interleave 
on the triggering event itself. This allows successive occurrences of the triggering task 
to start different counter processes, and enforces the timing condition on each. In 
practice, the number of overlapping threads of this sort seems not to be large, and 
thus we do not need to compose many concurrent observation processes. 

The second restriction appears less of a practical problem, and could be similarly 
removed, although possibly at the cost of adding a further parallel process to control 
the distribution of execution signals. 

5.5     Conditional Requirements 

Where a condition is required to be enforced in a limited range of system stages, it 
is obviously necessary to be able to identify when the process enters or leaves such 
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states. This will require that our implementation model be extended to offer addi- 
tional communications specifying the critical states. In many cases, the information 
will be easy to identify in a straightforward model of the software; the model of a 
task which examines operating conditions and changes the system mode accordingly 
can easily be extended to signal such changes on an extra channel. An alternative ap- 
proach might add a monitor in parallel with the implementation (or the specification) 
to detect and signal changes in more complex conditions. 

Suppose, then, that this enables us to provide a model which engages in an event 
from set Ri when entering a state where some trace condition should be enforced, and 
an event from set R0 when leaving such states. If the requirement would normally be 
enforced by a process SPEC, we may construct a process which allows behaviors of 
SPEC between Ro and Ro, but arbitrary traces otherwise using the CSP interrupt 
operator as follows. 

SPEC  =  ([]  x:R_I @ x -> SPECactive)   [] 
([]  x:R_0 @ x -> SPECinactive) 

SPECactive =  (SPEC   Ml  RUN(R_D)  A 
([]  x:R_0 Q x -> SPECinactive) 

SPECinactive = RUN(diff(SIGMA,R-D)  A 
([]  x:R_I Q x -> SPECactive) 

(This assumes that an event from Ri U Ro will precede any other to determine the 
initial state - other initial assumption are clearly trivial to encode.) 

The above definition assumes that the SPEC condition is independent of Rj U 
R0 and may be re-initialized whenever it becomes necessary to enforce it. Other 
conditions can be captured by, for example, maintaining some separate specification 
state in a process placed in parallel with SPEC, or placing SPEC in parallel with 
a process which will only allow it to progress between Ri events and Ro events, and 
otherwise permits the implementation arbitary trace behavior2. 

5.6     Quantitative Results 

Our specification for a sequence timing constraint is constructed as an observer, mon- 
itoring the tasks which are executed and maintaining a count of the time elapsed since 
the start of a sequence. The value of this counter at the point where the execution of 
the last task in the sequence is observed may clearly be used to give a measure of the 
margin remaining before the deadline in a particular point in the execution. Every 

2This will obviously entail renaming the entire alphabet of SPEC in order to interleave two 
alternative behaviors, and renaming them back to the implementation view at the outermost level. 
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State of the specification at in which the timing requirement has just been satisfied 
will have such a value associateed with it. Thus if we can identify the set of states 
which our "observer" can reach while observing our system, we can find the set of 
possible margin values, and in particular we can identify the least. 

When we prove that a refinement holds using FDR, the tool builds a set of pairs 
relating each state in the implementation of our system to the corresponding states 
of the specification which it satisfies. The set of states which the observer can reach, 
therefore, is simply the set of states which are related to one or more states of the 
implementation by a successful FDR check. (If the check is not successful, the com- 
plete state space will not have been explored, and consequently the approach we are 
outlining does not hold - we might not expect to be able to measure a safety margin 
in an unsafe system!) A small modification to the refinement-checking program used 
in FDR easily allows us to determine which states of the specification were visited 
in the course of demonstrating a successful traces refinement, but this information is 
initially in a form which refers only to the observable behavior of the specification, 
and in particular it refers to a process which has been compressed in the course of 
normalization3. 

We thus must solve two technical difficulties to use the technique in practice: 
we must prevent FDR's compression algorithm from merging states with the same 
observable sequences of behavior but different time margins, and we must provide a 
way of encoding this timing information in a way which allows it to be retrieved from 
the compressed machine. A simple matter of CSP programming addresses both issues: 
we add an additional communication channel, margin say, to the specification process, 
and modify the observer to permit an output of the remaining time whenever the last 
event in a sequence is observed. We do not make this event compulsory, however, 
and its occurence need make no change to subsequent behavior. This addition does 
not prevent any process which previously satisfied the specification from continuing 
to do so, because the additional communication is always merely a choice which the 
implementation can chose to ignore4. As the only additional events are confined to a 
channel whose name can be chosen so as not to appear in the implementation model, 
this change equally does not accept any otherwise prohibited implementations5. 

The additional possible outputs of distinct values prevent the normalization from 
identifying states with differing margins (although the effect on the size of the whole 
specification will only be additive in the case that immediately following the comple- 

3 Version 1 of FDR uses a strong bisimulation relationship to factor the pre-normal form. FDR 2 
incorporates a wide range of semantic compressions. 

4The nature of the choice (determinsitic or nondeterministic) is irrelevant for proofs of traces 
refinement. 

5Formally, we insist that the new specification (Spec1) relates to the old as follows: Spec =T 

Spec' \ {margin} and so Spec QT P exactly when Spec' \ {margin} CT P, and thus as P \ 
{margin} = P, Spec CT P when Spec' CT P. 
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tion of a sequence the observer was to return to a "reset" state), and also provide a 
convenient means of presenting the state information to the user. The modified FDR 
returns the union of all the possible initial events of states visited by the specifica- 
tion. A timing margin of t was possible exactly when margin.t appears in this set. 
Note that we must use the set of possible actions from each specification state, as we 
guarantee that a transition margin.t is never performed by the implementation, and 
thus never explored further by the refinement engine. 

Let us now consider the similar problem of measuring processor slack time in 
cyclicly scheduled system. The tasks associated with each frame will be executed 
when the frame starts, and assuming that our design is adequate, these will terminate 
some time before the next frame is due to start6. In practice, the time between one 
frame and the next will be occupied with non-critial background tasks. In a similar 
manner, we may add to our formal model a task which is active over this interval and 
which simply counts the time periods which elapse until the next frame start signal 
is actually generated - it is usually straightforward to do this in a way which does 
not change the behavior of the overall system with respect to the original interface of 
the model. If this task is able communicate these time values to the environment on 
some channel, the possible values of processor slack time can simply be extracted by 
examining all possible behaviors and noting the values transmitted on this channel. 
As this channel is an artifact of our modelling rather than a physical entity, our 
specifications can simply be expanded to ignore it: 

SPEC   =   SPEC HI CHAOS{slack} 

If a finite-state process communicates only finite ranges of values over a finite set of 
channels, the set of events which are actually possible can be calculated by searching 
the space of possible behaviors - modified versions of FDR and a simple program 
based on the FDR 2 library have already been constructed for this task. 

6    Modelling the System 

As noted above, the programs we consider consist of a number of top level tasks 
executed in sequence by a scheduler procedure which is itself executed at regular 
intervals by the run-time system. Each excution of the scheduling procedure is a 
frame. The entire scheduling sequence will typically repeat at a somewhat lower 
frequency - each such complete set of frames will be termed a cycle. Less critical 
tasks may, in turn, be run according to a sub-schedule only once in a number of 
cycles (the possibility of abstracting from the details of these infrequent tasks will 
be discusse below. Additional non-time critical (background) tasks may in turn be 

6Assuming, for the present, that our real-time tasks are not pre-emptable. 
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executed when the processor is idle - these tasks are not considered further in this 

report. 
The major components of the formal model represent functions which can be 

identified in the actual software structure of such a program: 

• A timer process which relates the occurrence of i events (indicating the start 
of a frame) to the physical passage of time, and thus is an analogue of the 
hardware timer and run-time system in an actual system. Our formal model 
will simply count the number of time intervals which are permitted before the 
next interrupt, and allow time to pass (if this number is greater than zero), or 
signals the interrupt (if the number is equal to zero). The following definition 
uses tock to represent the passage of time, and cycle to represent the interrupt. 

Timer(n) = Timing(n,0) 

Timing(n,m) = if  m == 0 
then cycle -> Timing(n.n) 
else tock -> Timing(n,m-1) 

The variable m keeps track of the time to the next interrupt, and n represents 
the cycle length which is used to reset m when an interrupt actually occurs. 

• A "store" process will keep track of the information which the scheduler uses 
to determine control flow. This will include both scheduler specific state, such 
as the frame and cycle counters, and any application-dependant data (such 
knowledge of any failures observed in a fault-tolerant network, system operating 
mode, etc.). Counters may be modelled simply as a process which maintains 
a number which is incremented periodically and which may be read by the 
scheduler when required. In modelling other state information, we may take 
any conservative non-determinstic approximation to the actual system behavior 
and still be assured of the validity of our analysis. Indeed, if no constraints are 
placed on the systems behavior across state boundaries, an entirely arbitrary 
selection of mode data will be permissible. 

• The most complex process is that which represents the control flow through 
the actual program. In its simplest form, this may closely resemble the proce- 
dural code for the scheduler implementation, taking the form of a loop which 
indexes a data table including information about each task. The actual style of 
representation will be discussed below. 
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6.1    Representing task data 

There appear to be two distinct possible methods of representing the task set present 
on a cyclic-scheduled system, one using parallel composition, and the other effectively 
sequentializing the information. 

Perhaps the most natural respresentation involves defining a concurrent process for 
each task, and placing all these processes in parallel with a scheduling process which 
ensures that no more than one task executes at any given time. (This approach is 
demonstrated in [8], for example.) A typical task might take the form 

TASK(id, duration) = 
exec.id -> RunningCid,duration,duration) 

[] 
tock -> TASK(id,duration) 

Running(id,maxduration,remaining)   = 
if remaining == 0 then 

done -> TASK(id,  maxduration) 
else 

(done -> TASK(id, maxduration)   |~| 
tock -> Running(id,maxduration,  remaining -1)) 

The task switches from idle to running on recipt of an exec signal, and executes for 
a maximum of duration time units. On completion it informs the scheduler via the 
done signal and returns to the idle state. Not only is this approach close to the 
conceptual model used in designing the system, but it permits processes to maintain 
internal state if this is desirable. For example, a task which dispatched according 
to a sub-schedule could maintain a variable recording its position in that schedule, 
or the model of a communication task might be permitted to assume (from external 
data-rate considerations) that a buffer could not be full to its maximum extent on 
two adjacent calls. As regards formal manipulation, however, this representation 
does have some drawbacks; in particular the assumption that at most one process 
executes at a time must be enforced external to the definition of the task set (by the 
scheduler)7. 

An alternative approach which makes the fact that only a single process is active 
at any one time explicit is to represent the execution of tasks as a sequence of process 
invocations. A typical task might now be represented 

TASK(i,  d)  = exec   !   i -> RUNNING(d) 
RUNNING(n)  = if      n == 0 

7The resulting inefficiency of state representation, and particularly the inefficient representation 
of multi-way synchronization, are major deficiencies in the FDR-1 tool in this context. 
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then SKIP 
else  (SKIP   |"|  tock -> RUNNING(n-1)) 

The exec signal now serves only to inform the environment of teh execution of the task 
(for specification purposes). When a task completes, it simply terminates successfully. 
The complete task set is now represented as a sequence of tasks: 

TaskSet   =   Task(A, 30); Task(B, 45);...; TaskSet 

(Note that recursion or iteration can be used to complete the cycle at the end of 
a single pass.) Additional processes may be added to the sequence to model the 
interaction of sequential behavior with cycle interrupts, and to model processor slack 
time (or background processing). State values, however, must be maintained by 
a separate parallel process, as the CSP sequential composition operator does not 
transfer internal state. 

In either of the above cases, the simple task model given above can easilt be 
extended to allow for conditional execution according to a value provided by a cycle 
count or state variable process. 

To avoid the complexity of modelling long cycles, we can abstract away from 
the details of some infrequent tasks. Suppose the highest frequency tasks in our 
system were executed every 5ms (the frame time), and the majority of tasks were 
repeated every 50ms (i.e. every 10 frames). If one of these tasks in turn executed 
a sub-schedule and invoked relatively infrequent (period Is, say) tasks, then a full 
inductive proof (or mechanical analysis) would have to consider at least a possible 
(1000ms/5ms =) 200 combinations. In many cases, however, the time occupied by 
the infrequent tasks will be small, and we may make the conservative assumption 
that every invocation of the sub-scheduling task occupies a non-determinsitic amount 
of time up to the actual worst case. If this approximation can be made, we need only 
consider (50ms/5ms =) 10 configurations. It may be, of course, that the schedule will 
not meet all its requirements under this assumption, but we can be sure that those 
it does meet certainly hold of the actual system. 

7    Verification 

The essence of verifying that a model of the form outlined above satisfies specifica- 
tions as discussed in Section 5 is to prove that a refinement relation holds between the 
CSP specification process and the implementation model. It is important to note that 
although many of the requirements discussed would conventionally be thought of as 
liveness properties (tasks will be executed within bounds), the addition of quantita- 
tive timing constraints results in a property which can be expressed as a condition on 
allowable traces, coupled with the necessary proof that the implementation does not 
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"stop time" by entering a state after which no timing events are possible or by insisting 
that infinite computation occurs between timing events. We may check these latter 
"well-formedness" conditions by verifying a single failures-divergence refinement: 

RUN{t0ck}   QFD   System \ Sigma - {tock} 

Once this is established, timing properties can be verified by considering only the 
traces of the processes involved: 

Spec   QT   System 

Because the CSP sychnronizing parallel operator (|[ X \ Y ]|) can be used to represent 
conjunction in the traces model, we may prove satisfaction of each of our timing 
properties separately. In addition, in some circumstances we can exploit the following 
law 

SQTP   =>   SQTP \[X\Y]\ Q 

to "factor out" that part of our system model which enforces a particular condition 
and thus simplify our analysis further. 

The relationship between trace refinement and parallel composition can be ex- 
poloited further if we need to verify a condition which depends on assumptions about 
the environment: placing a deterministic process which enforces the condition in 
parallel with our system model will constrain the space of possible behaviors ac- 
cordingly. We should note, however, that in order for this approach to be valid, the 
"well-formedness" property above must be shown to hold of the system and constraint 
together. (Failure of this condition implies that the system and constraint are in fact 
inconsistent.8) 

Another application of parallel composition is the addition of details about tasks 
which appear to the scheduling system as a single entity, but which implement a 
sub-scheduled sequence of actions internally. For example, an adaptive filtering task 
may need to be scheduled every frame (in order to accept inputs and provide filtered 
output), but might contain parameters which should only be updated relatively in- 
frequently. If this activity is split into two separate tasks, the overall number of items 
to be run increases (consequently increasing overheads), and the abstraction of the 
"filter" is broken - the updating task must have access to what could otherwise be 
private data. 

We may instead decide to allow the filter to perform the updates, using an internal 
counter to keep track of when this is required. This internal detail need not be made 
explicit in the overall model unless the updating process takes sufficiently long that 
it does need to be considered in the top-level schedule, in which case, of course the 

8If the constraint is deterministic. 
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abstraction must necessarily be broken. To verify that the filter process as a whole is 
scheduled sufficiently often, the model need only refer to single event exec.filter. To 
guarantee properties of the update, however, we may constuct a separate model of 
the internal state of the filter: 

Filter(n)  = tock -> Filter 
□ 

exec.filter -> if n == 0 then 
exec.update -> tock -> Filter(N) 

else Filter(n-l) 

We include explicit reference to the timing event here in order to insist that the 
exec.update is made visible to the environment as soon as it becomes available. (The 
priority mechanism discussed in [2] will provide a more satisfactory solution to this 
type of problem.) 

We now check 

Specupdate   QT   Filter(N)\[{exec.filter, tock}]\ System 

Because the Filter process has no impact on the operation of other tasks, however, 
we need not treat it as an integral part of the model, and need only include it when 
testing specifications that reference exec.update. 

Assuming that the refinement relations which need to be established are being ver- 
ified mechically by the FDR tool, extraction of the additional information required 
to give quantitative results is straightforward, and in the majority of cases causes no 
significant run-time penalties. As discussed earlier, the quantitative measure associ- 
ated with a specification state can be encoded in the set of events which the state may 
permit (its initials). A simple modification to the FDR system allows the refinement 
checking process to record which specification states were visited in the course of a 
check, and to export this information at the end of a check. The current application 
only requires that the union of the initials of each visited normal-form state is pro- 
duced. We then may examine which events on any nominated channel were possible, 
and so deduce the possible values of the timing margin (possibly rounded to some 
degree). Processor slack time can be similarly extracted from the set of all events 
occuring in any trace of the implementation, either by modifying the current FDR 
refinement engine, or by using a specialized program using the FDR 2 libraries. 

In either of these cases, of course, we are most interested in the minimum values 
of the sets of (margin or slack) times returned by the modified tool. It is perhaps 
interesting to notice, however, that the profile of possible timing margins does provide 
some information: if a particular timing requirement is initiated by a frequent event 
and ultimately discharged by the occurrence of a task which is executed less often, the 
observed margins will "cluster" according to the number of frames which can elapse 
between the execution of the tasks. 
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8    Summary & Implications 

The overall conclusions of our work on a number of examples of the form described 
here are encouraging: we have used this approach on practical problems taken from 
important application areas, and have had little difficulty in obtaining useful results. 
In particular, even "real-world" schedulers produced without the intention of applying 
a formal model seem amenable to capture in CSP, and the models that result are not 
overly complex for analysis using existing tools. 

The one parameter which is most critical in determining the overall size of such 
models is the time unit chosen as the basis of our discrete-time models. By using a 
scaling function whenever time values appear in our models, we are able to adjust this 
parameter easily and so gain confidence in the stability of our results. In our largest 
example to date, the base time interval could be changed by more than an order 
of magnitude without any observable change in behavior (other than the inevitable 
variation in rounding). 

Two features of the problem domain seem to simplify the analysis of these systems. 
The first relates to the requirements placed on them: the majority of the constraints 
which an embedded system is required to satisfy fall into a small number of clearly 
identifiable catagories, including 

• Safety and data-dependence properties (limiting the permissible sequences of 
actions). 

• Iteration rate and timing properties (specifying when a particular task must be 
invoked). 

• Task sequence constraints (specifying overall timing constraints on particular 
computation sequences). 

This regularity means that a great many requirements can be expressed in terms of a 
few basic definitions. The ability of the theory to support compositional verification 
means that checking these properties is then a mechanical task, involving little human 
input once the data entry is complete. 

A similar regularity appears in the model of the actual implementation of the 
schedule. The structure of the model is essentially fixed by the scheduling strategy 
and the architecture of the implementation. Once this has been captured, subsequent 
changes to the set of tasks executed or their ordering only involve changes to the small 
number of data-structures required to define a parallel or sequential set of processes 
as discussed in Section 6.1. A particularly important feature is that only a single 
core model of the implementation is required to verify a wide range of conditions and 
extract a number of timing measures. 

There are obviously some issues which must be addressed before the techniques are 
suitable for wide-spread use. Principal among these are the performance limitations 
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of the current production versions of the FDR tool in systems involving large multi- 
way synchronizations9, and the difficulty in maintaining models of (potentially rapidly 
changing) systems without large amounts of effort by skilled personnel. Integration of 
the methods described for extracting timing margins and processor utilization into the 
supported interface of the tool is also obviously desirable. Extension of this style of 
analysis to pre-emptive systems (following, perhaps the trivial example in [8]) would 
address the concerns of a wider application group than the non-pre-emptive examples 
analyzed to date. 

Other areas which also deserve investigation in the long term include limiting the 
effects of the use of a discrete-time model, possibly including the use of symbolic 
manipulation of continuous values. 
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A    Example - Auto Engine Managment System 

A.l    Interfaces 

The engine management system reads the following values: [Recall that we intend 
the following example more as an example of task mix, timing and dependency than 
as a practical system design!] 

• Engine speed 

Accelerator pedal angle 

Cooling water temperature 

• Oil temperature 

• Fuel pressure 

• Exhaust gas data 

and provides the following outputs 

This is Release 2.0 of this document, last modified by Michael Goldsmith at 20:34:42 GMT on April 
25, 1995. 
This is Release 2.0 of this and the following sections, last modified by Michael Goldsmith at 
20:37:41 GMT on April 25, 1995. 

• 

• 
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• Injector timing required 

• Ignition timing required 

• Fuel pump drive 

• Water pump drive 

• Tachometer drive 

• Engine status indication 

The highest frequency outputs should be recalculated at a frequency of 160Hz; more 
slowly changing signals should be monitored and/or recalculated at 80Hz or 40Hz as 
outlined below10 

A. 2    Tasks 

The system is implemented by the following tasks: 

Acronym Function Frequency/Hz Max duration/^s 
RAA Read Accelerator Angle 80 300 
RSD Read SpeeD 160 500 
RFP Read Fuel Pressure 160 300 
ROT Read Oil Temperature 40 250 
CSD Calculate Speed Demand 80 1000 
CIT Calculate Injector Timing 160 700 
CFP Check Fuel Pressure 160 300 
COT Check Oil Temperature 40 250 

DI Drive Injector 160 500 
AGT Adjust iGnition Timing 80 800 
DFP Drive Fuel Pump 160 300 
RXA Read eXhaust Analysis 40 400 
AMX Adjust MiXture target 40 400 
RWT Read Water Temperature 40 250 
CWT Check Water Temperature 40 250 
DCP Drive Cooling Pump 40 300 
LSS Limit Speed Schedule 40 400 
IES Indicate Engine Status 40 800 

DTM Drive TachoMeter 40 250 

10160Hz ensures at least one update per revolution up to a "red-line" of 9600rpm. 
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This task set is perhaps somewhat small by typical application standards, but not 
unrealistically so. The maximum durations are hypothetical, but again, we feel that 
they are not unreasonable. In a practical system there may be a greater range of times 
than 4:1, but many real tasks can be achieved in less that 250/zs, and adding smaller 
tasks does not in general complicate the scheduling problem as much as adding large 
ones 

We will assume the data dependency relationships between these tasks is as shown 
in Figure 1 (over a four frame cycle). 

A.3    The Schedule 

The following dependencies exist between tasks within a frame: 

Precedes Precedes 
RXA    AMX RWT    CWT 
CWT    DCP CIT     AGT 
RAA     CSD ROT    COT 
COT     CSD CIT     CFP 
CIT       DI RFP     CFP 
CFP     DFP RSD    DTM 
RSD     CIT CSD     CIT 

We can use this information to derive a permissible ordering for tasks within a frame 
mechanically (using the Unix tsort(l) utility, for example). 

Adding in those tasks which have no dependencies within a frame, we propose to 
execute the EMS tasks on a four frame cycle according to the following schedule: 
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Figure 1: Engine Management System Data-Flow Diagram 
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Relative order   Task Identity    Active in Cycles 

1 RSD 
2 RFP 
3 ROT 
4 RAA 
5 RWT 
6 RXA 
7 DTM 
8 COT 
9 CSD 

10 CIT 
11 CWT 
12 AMX 
13 DI 
14 CFP 
15 AGT 
16 DCP 
17 DFP 
18 LSS 
19 IES 

0 1 2 3 
0 1 2 3 
0 
0 

1 
1 

2 
2 

0 
0 2 
0 1 

1 

2 
2 

3 

0 1 2 3 
0 1 2 3 

1 
2 

3 

0 1 2 3 
3 
3 

A.4    Results 

A.4.1    Well-formedness and Processor Utilization 

The model presented above is well-formed (implying that no over-runs occur). Using 
a (rather coarse) 100/is time step, the model contains approximately 20000 states. 
The observed processor slack is as follows: 

Cycle   Slack//is 

0 1700 
1 1900 
2 1800 
3 1600 

(These figures indicate an average processor utilization of around 70%.) For a time 
step of 50fis, these figures became 1.6ms, 1.9ms, 1.8ms and 1.6ms, extracted from a 
model with around 67000 states, indicating that the results are relatively independent 
of the time-step chosen provided it is not significantly larger than these figures11. 

11 It is useful to observe that it does not appear practical to model using time-steps smaller than 
50/zs with version 1 of FDR: with a 20^s step, we were unable to compile the model within the 
200Mb available on our SparcStation. Using FDR 2, however, the compilation phase was negligible, 
and the check completed after exploring (the relatively small number of) 385304 states. 
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A.4.2    Iteration Rates 

The iteration rate of each task was checked against a specification insisting that an 
execution of each task must occur at some point within the time interval allocated 
to each frame in which the task is due to execute. If t represents the iteration rate 
of the task in frames (t € {1, 2,4 }), and p is the number of the first frame in which 
the task executes (representing the "phase": p E {0,1,2,3}), these intervals can be 
expressed as 

\6250{tn) + 6250p, 6250(tn) + 6250(p + 1)} 

for increasing integer values of n. 
While the design we have given above certainly meets all the iteration require- 

ments, one minor difficulty was encountered in the verification which casts some light 
on both the construction of models and on the practical difficulties of satisfying this 
form of specification. Our discrete time model necessarily uses integer arithmetic to 
represent time values, with the consequence that if a time-step (such as 200/xs) is 
chosen which does not divide exactly into the frame length (6250/is), rounding errors 
will be introduced: a frame will be assumed to be 31 clock cycles in duration. If the 
specification defines periods using the same frame length value, the rounding will be 
consistent in both specification and design, and the verification will proceed without 
difficulty. If, however, the requirements are expressed in different numerical terms 
(for example as a period of 25ms) it may be represented exactly (as 125 cycles). The 
implementation will have a cycle length of only 4 * 31 = 124 cycles, however, and 
thus will ultimately move out of step with the specification: FDR does indeed show 
this happening12. As a modelling issue, then, we propose that the time-step should be 
taken as an exact divisor of the frame (and thus the cycle) length whenever possible. 

As a more practical issue, this kind of drift shows that with this kind of analysis 
we can at best hope to demonstrate correctness with respect to the system clock: 
if we wish to include the effect of clock drift or uncertainty we must include these 
effects in the model explicitly (perhaps by weakening the definition of the process 
which relates cycle interrupts to clock events). 

Input-Output Timing 

For the purposes of this example, consider the following set of execution sequences 
which may be the subject of end-to-end timing constraints: 

12And as the difference in cycles is small (< 1%) the effort required to detect the error is large - 
up to 100 times the size of a successful check. 
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Identifier    Overall limit///s    Task sequence 
a 6250    { RFP, CFP, DFP ) 
b 6250    { RAA, CSD, CIT, DI ) 
c 25000    < RXA, AMX, LSS, CSD, CIT, DI ) 
d 6250    < ' RSD, CIT, DI) 
e 12500    < k RWT, CWT, IES ) 

f 25000    < ( RFP, CFP, IES ) 

9 6250    < ; RWT, CWT, DCP > 
h 6250    < [ ROT, COT, CSD ) 
i 25000    < ; ROT, COT, IES ) 

j 25000    < ; RSD, DTM ) 

k 12500 [ RAA, CSD, CIT, AGT ) 
I 12500 [ RSD, CIT, AGT ) 

m 12500 ; ROT, COT, CSD, CIT, AGT ) 
n 25000 ( RXA, AMX, LSS, CSD, CIT, AGT ) 
ri 31250 ( RXA, AMX, LSS, CSD, CIT, AGT ) 

Comments justifying the choice of these sequences are given in the FDR input listing 
below. Note that tests n and n' are included to show that execution sequences can 
extended beyond the length of a single cycle: requirement n is not met by our system, 
but n' is. 

We can provide a CSP specification which insists that whenever the first task in 
such a sequence is executed, the remaining tasks must follow, in order, within the 
specified time. Out-of-order or duplicate executions are ignored. The key components 
of the specification process are 

• A Limit process which observes occurrences of the triggering task, and causes an 
error if the time bound subsequently elapses without a signal being permitted 

by 

• A sequencing process which waits for each element of the sequence in turn, and 
resets the counter when all have been observed. 

Using the FDR input scripts included below we can show that our system satisfies 
all the requirements a-m and n'. 

Furthermore, we can extend the Limit process to output a measure the the timing 
margin remaining when the sequence is successfully completed. Using a time-step of 
250/iS, we obtain the following values: 

106 



Identifier Overall limit//is Range of margin 
a 6250 0-500 3000-6250 
b 6250 3000-6250 
c 25000 2250-28 
d 6250 2250-6250 
e 12500 0-1000 

f 25000 0-500 

9 6250 0-6250 
h 6250 3750-6250 
i 25000 0-750 

3 25000 4000-6250 16500-18750 
k 12500 0-7250 
I 12500 0-6250 

m 12500 0-7000 
n 25000 none! 
ri 31250 0-7000 

One obvious feature of these figures is that several threads have minimum margins of 
zero - a consequence of our artificial example which would be exceedly worrying in 
practice! In any practical situation, of course, our timing requirements are unlikely 
to correspond so closely with the design which implements them. If we permit an 
additional 1ms delay in each thread, for example, these zero margins are completely 
absent. 

We can also observe that some execution paths yield two distinct ranges of times; 
these will correspond to different sequences of execution which exhibit the task se- 
quence in question. For example, requirement j requires than an exeution of DTM 
follows each RSD within 25ms; DTM is executed only once in each cycle and thus 
there may be 0, 1, 2, or 3 frames between a call of RSD and the next DTM. (We may 
see fewer distinct ranges as these cases may yield overlapping margins.) 

A. 5    Summary 

This simple, though we feel not unrealistic, example shows how formal specification 
can be used to verify four key properties of a cyclic embedded system scheduler: 

• Absence of overrun; all tasks in one frame are complete before the next frame 
interrupt occurs. (Overruns would be manifest as deadlocks in which the clock 
process expected an interrupt to occur while the task execution processes did 
not.) 

• Processor slack times (contingency); we are able to determine approximate nu- 
meric values for the number of idle clock cycles which can be guaranteed to be 
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available in each frame, under the most pessimistic interpretation of our timing 
data. 

• Iteration rates and phases; relatively straightforward tests can demonstrate that 
each task is executed in the time allocated to the frames in whichit should exe- 
cute. This analysis can actually be strengthed to place more precise bounds on 
the "jitter" occuring in the execution time of each task - a potentially important 
property of tasks which communicate with external systems. 

• Input-to-output (or "thread") timing requirements; given a sequence of tasks 
whose execution is necessary for a change in input to propagate to a specific 
output, we may place overall timing constraints on the time between the exe- 
cution of the first and last tasks. We can also obtain numerical values from this 
analysis, giving values for the margins by which each satisfied requirement is 
actually met. 

Future developments in this technique should increase the range of properties 
which can be specified and quantitative values which can be obtained. Of particular 
importance is the extension of this work to more complex scheduling strategies. It 
should be noted that our specifications and analysis do not depend on the form of the 
scheduler, merely on the fact that a CSP model can be given for it. This fact should 
certainly facilitiate extending the scope of this work. 

B    FDR Input Files 

The following sections give listings of the input files required to perform this analysis 
using FDR. For clarity, CSP definitions are set in a teletype font and comments 
(lines preceded in the actual files by —) are set in italic. 

To simplify the maintenance of a range of similar specification processes, some 
of the specification files have been written to be pre-processed using the Unix m4(l) 
utility; m4 source files include macro definitions (using the define keyword) and 
instances of these macros, written 

macro(argument,   argument,   ...) 

B.l    The Basic Model (basics.csp) 

include "rtlib.csp" 

pragma inline "ML" val _ = print "basics.csp: "; 

Nat = {100 * k + 10 *    i+jl 
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i <- {0,1,2,3,4,5,6,7,8,9}, j <- {0,1,2,3,4,5,6,7,8,9}, 

k <- {0,1}} 

FrameCount = {0,1,2,3} 

NumberOfFrames = 4 

include "tasks.csp" 

pragma inline "ML" val _ = print  "Frame interrupt  "; 

Every time signal will represent a fixed interval (determined by the micros scaling 
function). We must ensure that a frames start at 6250us intervals. 

pragma channel tock 

The following process is a simple counter which allows n events on channel a to each 
one on b. 

Counter(a,n,b)  = Counting(a,n,b,0) 

Counting(a,n,b,m)  = if      m == 0 
then b -> Counting(a,n,b,n) 
else a -> Counting(a,n,b,m-l) 

pragma channel framestart 

FrameLength = 6250 in us, for a 160Hz frame rate 

Clock = Counter(tock,  micros(FrameLength),   framestart) 

We now define our model of the scheduler. Only one variable influences the tasks 
scheduled in a frame, its position in the cycle. 

pragma channel framepos   :  FrameCount 

FrameCounter = framestart -> FrameCounting(O) 
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FrameCounting(n) = framepos ! n -> FrameCounting(n) 

[] 
framestart -> if      n == NumberOfFrames  - 1 

then FrameCounting(O) 
else FrameCounting(n+l) 

At any time after the start of the first frame this process is willing to output the 
current cycle count value (n) on the framepos channel. 

pragma inline  "ML" val _ = print  "Tasks  "; 

The next part of our model is the actual tasks themselves. The execution of a task a 
will be represented by an event execed.a in our model. 

pragma channel exec   :  TASKID 

Whenever we examine a typical task, we read the current scheduler state and choose 
one of two outcomes: either the task is not to be executed, and we simply move to the 
next, or the task is due to be run, and so we execute it. In the following definition, i 
is the task name, d is its maximum duration and C is the set of cycles in which i is 
executed. 

TASK(i,  d,  C)  = framepos ? c -> 
if      member  (c,C) 
then exec   !   i -> RUNNING(d) 
else SKIP 

A task which is being executed is represented as being able to terminate early (as d 
above is a maximum duration), or to continue execution until its time left to execute 
is complete (the variable n represents the maximum time left for the task to run). 

RUNNING(n)  = if      n == 0 
then SKIP 
else  (SKIP   I"I  tock -> RUNNING(n-1)) 

The scheduler loop takes the form of a loop which examines each of the tasks in turn 
on each cycle. The special task Background- is placed at the start of the list of tasks 
to model the other activity on the processor. 

Tasks = while(rseq(x,  TASKS,  CallTask(x))) 
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We include a counter in this task to measure the amount of time available between 
scheduler cycles. These times will be associated with the current frame position, and 
output on the channel slack (in lOOus units) 

SlackMeasure = {n  I  n <- Nat,  n <= 100} 

pragma channel slack   :    FrameCount   .   SlackMeasure 

BackgroundTask = Backgrounded(micros(FrameLength)) 

Backgrounded(cnt)  = 
(tock -> if 0 < cnt then Backgrounded(cnt-1)  else 

Backgrounded(O)) 

□ 
(framestart -> framepos ? c -> 

slack   !   c   !   ((micros(FrameLength)   - cnt)   / micros(250))   -> 
SKIP) 

All other tasks are simply treated as non-deterministic periods of computation, as 
described above. The following definition simply makes extracting the appropriate 
fields from the data table a little clearer. 

TASK_INSTANCE(id,  data)  = TASK(id,  fst(data),   snd(data)) 

Examining a task now simply involves determining whether it is one of the two special 
cases: 

CallTask(id)  = 
if id == Background. 
then BackgroundTask 
else TASK_INSTANCE(id,   lookup(id,  TASKINFO)) 

The overall system model consists of the clock, the tasks and the frame counter 
composed in parallel. The framepos channel represents local data and is cocealed. 

System =  ((Clock   [I   {tock,framestart}   |]  Tasks) 
[|  {|  framestart,  framepos   1}  I] 
FrameCounter)  \ {I  framepos   |} 

The actual start of a frame is not required for most specifications, so we may conceal 
that also: 
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TestView = (System \ { framestart }) 

This definition forms the basis of a variety of checks. 

B.2    Real-time Analysis Functions (rtlib.csp) 

include "tuplelib.csp" 
include "arraylib.csp" 

pragma opaque "ML" micros 
pragma opaque "ML" raiseerror 

pragma inline "ML" fun CSPscale [e] = 
pragma inline "ML"    Atom (InjectNum ((100 + NumberOf (CheckAtom (e))) 
pragma inline "ML" div 250)); 
pragma inline "ML" exception ModellnternalError; 
pragma inline "ML" fun CSPraiseerror _ = raise ModellnternalError; 

pragma inline "ML" DefineMLFunction "micros" CSPscale; 
pragma inline "ML" DefineMLFunction "raiseerror" CSPraiseerror; 

pragma inline "ML" ELIDEPRINT.print.elision := SOME 2; 

B.2.1 Declaration-only version (rtlib.def) 

The following declarations can be included in any subsequent file, provided that 

rtlib.csp has been loaded once. 

pragma opaque "ML" micros 
pragma opaque "ML" raiseerror 

B.3    Task Data (tasks. csp) 

pragma inline  "ML" val _ = print  "task data,   "; 

This file contains the actual scheduler data, stored as an array in execution sequence 
within the cycle. For each task, it includes a maximum execution time and the set of 
cycles in which the task is executed. 

TASKINFO = < 
pr(RSD, pr(micros(500), {0,1,2,3})), 
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pr(RFP, 
pr(ROT, 
pr(RAA, 
pr(RWT, 
pr(RXA, 
prCDTM, 
pr(COT, 
pr(CSD, 

pr(CIT, 
pr(CWT, 

pr(AMX, 

pr(DI, 
pr(CFP, 
pr(AGT, 
pr(DCP, 
prCDFP, 
pr(LSS, 

prClES, 

pr(micros(300) 
pr(micros(250) 
pr(micros(300) 
pr(micros(250) 
pr(micros(400) 
pr(micros(250) 
pr(micros(250) 

pr(micros(1000) 
pr(micros(700) 
pr(micros(250) 
pr(micros(400) 

pr(micros(500), 
pr(micros(300) 
pr(micros(800) 
pr(micros(300) 
pr(micros(300) 
pr(micros(400) 
pr(micros(800) 

{0,1,2,3})), 
{0})), 
{0,2})), 
{2})), 
{1})), 
{1})), 
{0})), 

,{0,2})), 
{0,1,2,3})), 
{2})), 

{1})), 
{0,1,2,3})), 
{0,1,2,3})), 
{1,3})), 
{2})), 
{0,1,2,3})), 
{3})), 
{3}))> 

The sequence of tasks to be executed starts with the dummy Background- task. 
TASKS = <Background_>"domain(TASKINFO) 

TASKID = set(TASKS) 

B.4    Iteration Specifications (iterations.m4) 

pragma inline  "ML" val _ = print  "Loading simple tests:   "; 

'include'   "rtlib.def" 

Strict version - first event at zero +- limits (thus use limits to allow for phase) 

BLURRED(i,  T_i,  L_i,  U_i)    = BLUR(i,  T_i,  L_i,  U_i,  T_i) 

BLUR(i, T_i, L_i, U_i, n) = 
(if n < T_i + U_i then tock -> 

BLURU, T_i, L_i, U_i, n+1) else STOP) 

[] 
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(if T_i + L_i <= n then exec.i -> 
BLURCi, T_i, L_i, U_i, n-T_i) else STOP) 

define(iterate, 

Speclter$l = 
BLURRED($1',' micros($2)',' micros($3+($5 * 6250))',' micros($4+($5 * 6250))) 

Testlter$l = (System \ { exec.v I v <- diff(TASKID','{$1}) » 
\ {| framestart',' slack I} 

pragma inline "ML" val _ = print "$1 "; 

'divert'(7) 
'iterate.check.command'($1,"Speclter$l","TestlterSl") 

'divert'(1) 

) 

define(iterate_check_command, 
pragma inline "ML" val Result$l = CheckTrace $2 $3; 

) 

f = 6250 permitted fuzz 
fl = 0 

define(skipiterate) 

iterate(RAA, 12500, 0-fl, f, 0) 

iterate(RSD, 6250, 0-fl, f, 0) 

iterate(RFP, 6250, 0-fl, i, 0) 

iterate(ROT, 25000, 0-fl, i, 0) 

iterate(CSD, 12500, 0-fl, i, 0) 

iterate(CIT, 6250, 0-fl, i, 0) 

iterate(CFP, 6250, 0-fl, f, 0) 

iterate(COT, 25000, 0-fl, i, 0) 

iterate(DI, 6250, 0-fl, f, 0) 

iterate(AGT, 12500, 0-fl, f, 1) 
iterate(DFP, 6250, 0-fl, f, 0) 

iterate(RXA, 25000, 0-fl, f, 1) 
iterate(AMX, 25000, 0-fl, i, 1) 
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iterate(RWT, 25000, 0-fl, f, 2) 
iterate(CWT, 25000, 0-fl, f, 2) 
iterate(DCP, 25000, 0-fl, f, 2) 
iterate(LSS, 25000, 0-fl, f, 3) 
iterate(IES, 25000, 0-fl, f, 3) 
iterate(DTM, 25000, 0-fl, f, 1) 

pragma inline  "ML" val _ = print  "Done\n"; 

B.5    Input-Output Specifications (thrspec.m4) 

pragma inline "ML" val _ = print  "thread specifications,   "; 

This file contains the definitions of processes and macros used in the sequence timing 
specifications. 

'include'   "rtlib.def" 

We first define the data values and types used in the measurement of timing margins. 
ThreadMaxLimit is any value at least as great as the longest time limit in a thread 
specification. 

MaxLimit = micros(50000) 

MarginQuantum determines the rounding used when reporting the results. 

MarginRes = micros(250) 

The margin channel is used to report the results. 

MarginType = {n * MarginRes   I  n <- Nat, 
n <= MaxLimit / MarginRes} 

pragma channel margin  : MarginType 

We also require a specification which will allow any trace, and guarantee that all 
possible executions of the implementation model are explored, in order to ensure that 
we find all possible values of the timing margin: 

DF(A)  =  I"I   a:A <3 a -> DF(A) 
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MarginSpec = DF({|margin|}) 

Now we define some processes used in constructing our specifications. Each specifica- 
tion will consist of two parts, one which keeps track of the elapsed time and another 
to monitor the calls to specified procedures in order, reset is the event used by the 
latter to inform the timer that the thread has been successfully executed. 

pragma channel reset 

The events irrelevant and therest are used in the following definitions as short-hand 
for procedure calls which do not satisfy the thread. 

pragma channel synch 

pragma channel irrelevant,   therest 

Limit is the timer half of the specification - when procedure trig is called, it enters 
the Bound state and states counting down the number of took events allowed by the 
limit. 

Limit(trig,count) = tock -> Limit(trig,count) 

[] 
exec.trig -> Bound(trig,count,count) 

[] 
therest -> Limit(trig,count) 

Bound decerements the timer value whenever tock is observed, and simply ignores 
procedure calls. When a reset occurs, it makes a further synchronization on channel 
margin (this is used in later specifications to allow timing margins to be examined), 
and then resets to its initial state. If the time limit is exceeded, further tock events are 
not permitted. (This will be visible in practice as a failure of the refinement check.) 

Bound(trig,count,curr) = 
(if 0 < curr then tock -> Bound(trig,count,curr-1) else STOP) 

[] 
reset -> (synch -> Limit(trig,count) 

[] margin ! MarginRes * (curr/MarginRes) -> 
synch -> Limit(trig,count)) 

[] therest -> Bound(trig,count,curr) 
[] exec ! trig -> Bound(trig,count,curr) 
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The basic unit used to build the part of the specification which monitors procedure 
executions is Await(f,X). This will perform any event from the set X, and either 
terminate successfully if the event is /, or remain in the same state if not. 

Await(f,X)  = ([]  x  :  X    0 x -> if x == f then SKIP else Await(f,X)) 

The following macro defines a process which actually implements the specification. It 
takes 4 arguments: the name of the process to be defined, a trigger event (the name 
of the procedure which starts the thread), a time limit, and a sequence of procedures 
which must be called to complete the thread. It instantiates a copy of the Limit 
process together with a sequence of Await processes which check for each required 
procedure in turn. This sequence terminates (and loops back to its initial state) only 
when all the procedures have been called in order. 

define(MakeWITHIN, 
$1 =  ( Limit($2,$3)   [[ therest <- exec.head($4)  ]] 

[|  union({|  exec.i   I   i<-{$2<,'head($4)}|}',' 
•CI  reset','synch   |})   |] 

while(rseq(y,<exec.$2>~<exec.i   I   i<-$4 >"<reset>, 
if y == reset then 

[]  x:{exec.ic,'irrelevant 
I   i<-union({$2}','set($4))} Q 

x -> reset -> synch -> SKIP 
else 
Await(y,  union({irrelevant}',' 

{ exec.i   I   i<-union({$2},set($4))   })))) 
)  \ {reset} 

) 

The reset event is not intended to be part of the specification, and thus is hidden 
from the environment. 

Finally, we define a macro which builds up the refinement test for a given thread. 
The parameters are a thread name or number, a starting procedure, a time limit and 
a list of other procedures. It defines a copy of the specification (and a version for 
compliance testing which has the margin channel hidden) and a test process which 
takes our system model and conceals all events which are not relevant to the particular 
thread. 

117 



The final group of lines may be used to add extra lines to the end of the pre-processed 
output to run each of the tests in turn. 

define(thread, 
MakeWITHIN(Single$1,$2, micros($3),$4) 

Spec$l = Single$l \ {synch} 

Test$l = (System [[ exec.i <- irrelevant 
| i <- diffCTASKID',' union({$2}','set($4))) ]]) 

\ {I framestart',' slack I} 

pragma inline "ML" val _ = print "$1 "; 

'divert'(7) 
'check.command'($1,"Spec$l","Test$l") 

'divert'(1) 

) 

define(check.command, 
pragma inline "ML" val Result$l = CheckTrace $2 $3; 

) 

B.6    Input-Output Specification Data (thrdata.m4) 

'include'   "rtlib.def" 

include(thrspec.m4) 
include(margins.m4) 

define(skipthread) 

The fuel pump is driven correctly within 6.25ms of a detected change in pressure: 

thread(a,  RFP,  6250,   '<CFP,  DFP>') 

The injector timing is adjusted within 6.25ms of a change in reported accelerator 
angle: 

thread(b,  RAA,  6250,   '<CSD,  CIT,  DI>') 
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Exhaust analysis changes propagate to injector timing within 25ms: 

thread(c,  RXA,  25000,   '<AMX,  LSS,  CSD,  CIT,  DI>') 

Changes in reported engine speed are reflected in injector timing in 6.25ms 

threadCd,  RSD,  6250,   '<CIT,  DI>') 

Cooling-water over heating is indicated to the driver in 12.5ms(!) 

threadCe,  RWT,  12500,   '<CWT,  IES>') 

Fuel pressure changes may take nearly a whole cycle to reach the driver: (who, fortu- 
nately, won't be able to respond in 25ms anyway!) 

threadCf,  RFP,  25000,   '<CFP,   IES>') 

Coolant temperature changes are reflected by the pump (fan?) in 6.25ms 

threadCg,  RWT,  6250,   '<CWT,  DCP>J) 

Excessive oil temperature will be transmitted to the speed-demand controller within 
6.25ms 

thread(h,  ROT,  6250,   f<C0T,  CSD>') 

And reported to the driver in 25ms 

threadd,  ROT,  25000,   '<C0T,   IES>') 

The tachometer is never more that 25ms out-of-date 

threadCj,  RSD,  25000,   '<DTM>') 

Changes in demanded speed propagate to ignition timing in no more than 12.5ms 

threadCk,  RAA,   12500,   '<CSD,  CIT,  AGT>') 

Changes in actual speed propagate to ignition timing in no more than 12.5ms 
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threadCl,  RSD,   12500,   <<CIT,  AGT>') 

Limits in speed due to excessive oil temperature similarly take no more than 12.5ms 
to influence ignition timing 

thread(m,  ROT,   12500,   '<C0T,  CSD,  CIT,  AGT>') 

Exhaust analysis results propagate to ignition timing (a perhaps somewhat convoluted 
path in ...? A single cycle ? 

thread(n,  RXA,  25000,   '<AMX,  LSS,  CSD,  CIT,  AGT>') 

Or somewhat longer? 

thread(ndash,  RXA,  31250,   <<AMX,  LSS,  CSD,  CIT,  AGT>') 

pragma inline  "ML" val _ = print  "Done\n"; 
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